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Introduction

It is common practice, both in academia and industry, to use various methods
of verification of results, with the aim of increasing society’s confidence in these
results. Indeed, if the proof of a mathematical theorem is understood and ac-
cepted by its author’s community, it can then be taken for granted and reused
in subsequent research work. In an applied environment, engineers can also use
theoretical results in the design of concrete industrial products. The various tests
carried out on these products before they leave the factories are another way to
ensure the confidence of future customers and users. More generally, the goal
of verification is to erase the naturally imperfect aspect of human work, and to
enable each generation to tackle increasingly complex problems, thanks to the
work of the previous generation, which it trusts.

Errare humanum est.*
Roman maxim

Unfortunately, despite all the verification procedures in effect, on many occa-
sions errors have crept into works, whether they be mathematical proofs or com-
puter programs. On June 4%, 1996, for instance, the ARIANE 5 rocket ended its
maiden flight? after about thirty seconds with an explosion caused by a computer
bug called integer overflow,® causing a loss of hundreds of millions of euros. More
recently, in 2018 and 2019,* two BOEING 737-MAX planes crashed within minutes
of take-off because software designed to prevent stalls failed and overrode man-
ual control. This time, the death toll was extremely high, amounting to several
hundred people.

Software testing shows the presence, not the absence of bugs.
Edgser W. DIUKSTRA (Dutch computer scientist)

The obvious conclusion is that testing, a fortiori carried out by humans, is no
longer enough, and that the time has come for formal verification, i. e., the use
of tools to certify the absence of errors in a mathematical proof or in a computer
program. Thisis the promise of formal methods, a field of research that provides a
theoretical basis for carrying out proofs on computers. In this vein, the end of the
20t century saw the emergence of a family of software called Automated Theo-
rem Provers (ATPs). These are digital implementations of proof search algorithms
in a given logical theory, allowing a human to enter a statement to be proved and
let the computer determine whether it is true or false.

Quis custodiet ipsos custodes?>
JUVENAL (Roman poet)

However, there is still a concern that these provers are not themselves infallible,
since they are derived from code written by humans, and may therefore contain
errors. Interactive Theorem Provers (ITPs), the flagship of formal methods, are
a response to this problem. This family of software is designed around a logical
core, a small amount of code that directly implements the rules of a logical the-
ory and is trusted by the users. Various tools are made available to the user to
carry out proofs, each proof being eventually verified by the kernel, guarantee-
ing unfailing confidence at all times in all developments carried out using such
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1: “Toerris human.”

2: Flight 501.

3: On a machine, numbers are represented
by a binary value of a certain fixed size so
that they can be stored in memory. In this
way, they cannot exceed a certain maximum
value. An integer overflow occurs when the re-
sult of an arithmetic operation exceeds this
value. The binary value retained for the num-
ber then becomes very small, which is often
a source of errors.

4: Flights LiIoN AIR 610 and ETHIOPIAN AIR-
LINES 302.

5: “Who watches the watchers?”



software. Conceptually, it is an optimal trade-off between human and machine.
Indeed, since a computer is not really capable of producing original reasoning,®
this task is left to humans. Yet, the machine excels in the mechanical application
of the logical rules of the kernel to check that a proof is correct, whereas a human
could make mistakes.

The price to pay for this additional safety is the interactive nature of these proof
assistants. Indeed, in order to represent highly abstract computer programs and
mathematical theories within a proof assistant and guarantee their versatility,
the underlying logical theory is often much more complex than in an automated
theorem prover. Furthermore, in order to have a readable and trustworthy kernel,
proof assistants do not benefit from the aggressive heuristics and optimisations
present in the code of ATPs. As a result, the user often has to spell out uninterest-
ing details in the proofs, and any automation becomes an arduous task.

This thesis is part of a research effort towards proof automation, to facilitate the
work of users of proof assistants, the ultimate goal being to spread the use of
these tools in place of software testing, wherever this is possible and relevant.
It therefore lies on the borderline between computer science and mathematics,
and oscillates between theoretical contributions and implementation work, be-
cause it is important to provide users with tangible tools as quickly as possible.
To place this work in a broad context, in this chapter we briefly retrace the history
of logic (§ 1.1) before presenting proof assistants along with their current level of
automation, as well as the major contributions (§ 1.2).

1.1 Ashort history of logic

Logic is the study of the formal rules used to determine whether a line of reason-
ing is valid. This discipline was founded in Antiquity. More recently, it got closer
to mathematics then theoretical computer science, by coming in the shape of
formal logic systems. Finally, with the advent of computers, logic became mech-
anised. In this section, we give some details of these different stages.

1.1.1 Historical foundations

In the West, the founding work in the field of logic dates back to ancient Greece.
Indeed, this discipline, then called Aoyikn), held a central place in public life there,
and many concepts still used today in this field come from thinkers of that time,
notably ARISTOTLE and EucLID.

In his Organon, AriSTOTLE defines the structure of logical reasoning. In this work,
he differentiates between the notions of being and predicate,” cause and conse-
quence, or affirmation and negation. He also introduces a logical construction
called syllogism, linking two premises and a conclusion by deduction.®

For his part, EucLID introduces definitions associated with demonstration, such
as postulates or axioms, unproved hypotheses that are taken as the basis of a
logical system, or propositions which are statements that can be proved. To these
were added numerous theorems, particularly in geometry and number theory,
to form the work of the Elements, which went on to become a veritable academic
reference. In general, until the end of the Middle Ages, logic was taught with these
founding works.

1 Introduction 2

6: Despite the recent impressive results in
this field of research, machine learning essen-
tially consists of compiling and harnessing a
huge amount of information in the best pos-
sible way. This information may be far more
massive than the knowledge of a single hu-
man being, but it is not a question of giving
the machine the human traits of originality,
creativity, etc.

7: The beings are the entities and the predi-
cates represent what can be said about them.

8: The best-known syllogism is probably the
following:

- All men are mortal;
- SOCRATES is a man;
- Therefore, SOCRATES is mortal.



1.1.2 Towards mathematics and computer science

After centuries of unprecedented scientific advances throughout the world, the
19™ century was marked by a quest to formalise logic. Indeed, the aim was to
build a common language for mathematics. In this context, formal languages®
were gradually developed. For example, FREGE introduced in the Ideography [1]
the concept of quantification'® and the predicate calculus,** which are still used
today. PEANO proposed an axiomatisation of arithmetic based on natural num-
bers[2], which gave birth to the mathematical induction reasoning taughtin math-
ematics nowadays. Finally, CANTOR created set theory [3], which made it possible
to describe all the mathematical objects of his time within a common framework.
Logic, although traditionally a discipline close to philosophy, became a branch
of mathematics.

During the 20t century, the theory of formal languages brought programming
languages, used to implement algorithms.*? The rules associated with these lan-
guages are then computation rules enabling programs to be actually executed
to obtain a result. However, several scientists identified links giving these lan-
guages a logical interpretation: this parallelis known as the CURRY-HOWARD corre-
spondence. This discovery marked a convergence between logic and the emerg-
ing theoretical computer science.

1.1.3 Mechanisation of logic

The development of computers allowed putting into practice the various formal
systems studied previously. This step heralded a new era for logic and mathemat-
ics, in which humans and machines would work together. The PROLOG [4] system
was bornin the early 1970s. In this programming language, the developer defines
a base of facts and rules for statements to be valid, and the user asks questions to
the system. PROLOG has been used extensively for language processing, but the
ability to reason by induction over numbers and trees also makes it suitable for
processing logical formulas. In this way, the user’s conjectures can be expressed
as queries, the validity of which the system can check by executing them.

Implementations of logical systems also include the family of automated theo-
rem provers, whose most widespread representative is the SAT!? solver. It re-
ceives as input a formula in propositional logic** and determines if there exists a
valuation®® that makes it true. SAT solvers are very popular because of the wide
variety of problems they can represent: planning, electronic circuit design, crypt-
analysis, etc. By adding symbols and specific behaviour for one or more theories,
such as arithmetic or bit vectors, we get an SMT® solver. This extension widens
the scope of SAT solvers to program verification problems.

Tools dedicated to certification of algorithms and mathematical theorem proving
were subsequently developed, such as model checking tools like TLA+ [5]. Such
software allow users to represent the objects they wish to reason about and to
describe the statements they wish to prove, all in an expressive formal language
closerto natural language. For example, these tools can be used to prove the cor-
rectness of concurrent and distributed algorithms, or to prove that an automa-
ton can never be in an invalid state (for example, a lift at a standstill between
two floors). Certain tools such as WHY3 [6] or LiQuiD HASKELL [7] allow programs
to be written in a language from the ML family and the various statements to be
proved directly in the same file. Within this framework, part of the proof burden
is delegated to SMT solvers, offering a certain level of automation, in such a way
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9: Formal languages are defined by a syntax,
i. e., afinite set of symbols that can be used to
create formulas according to precise and ex-
plicit rules. These symbols can then be given
a logical interpretation and rules for reason-
ing can be defined, which are also explicit, so
as to leave no ambiguity when manipulating
the language in this context.

[1]: FReGE (1882), “Begriffsschrift : Eine
der Arithmetischen Nachgebildete Formel-
sprache des Reinen Denkens”

10: Heintroduces two quantifiers:

- the universal quantifier
— “forall ”;
- the existential quantifier
— “there exists z”.
11: Also known as first-order logic.
[2]: PEANO (1889), “Arithmetices principia :
Nova methodo exposita”
[3]: CANTOR einer
allgemeinen

(1883),
Mannigfaltigkeitslehre.  Ein

“Grundlagen

mathematisch-philosophischer Versuch in
der Lehre des Unendlichen”

12: An algorithm is a sequence of operations
to be performed in order to solve a particular
problem.

[4]: COLMERAUER et al. (1973), “Un systéme
de communication homme-machine en
frangais”

13: Boolean satisfiability.

14: Formed from variables and negation,
conjunction or disjunction connectives.

15: Assigning a truth value (true or false) to
each variable in the formula.

16: Satisfiability Modulo Theory.

[5]: LAMPORT (1994), “The Temporal Logic of
Actions”

[6]: FILLIATRE et al. (2013), “Why3 — Where
Programs Meet Provers”

[7]: VAzou (2016), Liquid Haskell: Haskell as
a Theorem Prover



that for certain use cases, this family of tools is currently considered to be a good
compromise.

1.2 Proof assistants and automation

Despite the level of automation provided by an SMT solver, these tools are of-
ten used as black boxes, often unable to explain their reasoning steps. The con-
fidence that can be placed in these tools therefore remains limited, especially as
errors are sometimes discovered in their highly optimised code yet difficult to up-
datein a correct way. In the most critical applications, the extra level of reliability
required is provided by proof assistants, software with a more radical approach
but more manual for the user. In this section, we present these different aspects
of proof assistants before listing the major contributions of this thesis.

1.2.1 Arock-solid reliability

Proof assistants, or interactive theorem provers, are software designed to per-
form proofs based on collaboration between humans and machines. This kind
of software is built around a logical kernel, a small amount of code representing
the rules of the logical system implemented by the proof assistant. This kernel
is the only trusted code base for the user, as it verifies all the proofs performed
in the proof assistant. Each proof validated by the kernel can then be used in
other proofs, making it possible to progressively build entire libraries of proofs in
a given domain.

Proof assistants can be based on a wide range of logical systems. For example,
the IsABELLE/HOL [8] proof assistant is based on higher-order logic. In this thesis,
we are interested in a family of proof assistants based on type theory, an expres-
sive language, result of a thorough exploitation of the CURRY-HOWARD correspon-
dence, used to programme, express the statements to be proved, and carry out
the proofs, all in one. Examples of software in this family are AGDA [9], LEAN [10]
and CoqQ [11], the proof assistant on which this work is based. In this framework,
proofs are represented by proof terms, and the kernel actually checks them by
calling the typechecker!’ of the underlying language.

1.2.2 Still highly manual proofs

The downside of this level of confidence is that proofs once again become man-
ual, as the proof assistant requires all the steps in a proof to be made explicit by a
proof term. However, although the language in the CoqQ proof assistant is very
expressive, it is still very different from the natural language used by humans,
and it is difficult for a user to enter proof terms into the software by hand. More-
over, some proof steps need to be made explicit without being interesting for the
user. For example, explaining to the proof assistant mathematical manipulations
that are trivial on paper, such as commutativity of addition,® takes a substantial
amount of time and slows down the user’s proof work.

In order to solve these problems, the piece of software provides a toolbox bring-
ing its formal language closer to the natural language used in paper proofs. In
particular, these tools include inference functions, whereby the user can supply
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[8]: Nipkow et al. (2002), Isabelle/HOL: a
proof assistant for higher-order logic

[9]: NORELL (2008), “Dependently Typed Pro-
gramming in Agda”

[10]: DE MouRA et al. (2021), “The Lean 4 The-
orem Prover and Programming Language”

[11]: The Coq Development Team (2022), The
Coq Proof Assistant

17: On a computer, all values are repre-
sented in binary. However, it would be im-
practical to write complex programmes that
only manipulate numbers. In order to raise
the level of abstraction, many programming
languages encode various data structures in
binary while offering the developer a way of
manipulating them in a different way than
numbers, by giving them a type. One can
then manipulate strings of characters, lists,
etc. Typed languages are then equipped with
a typechecker to validate that the operations
associated with one type are not used on a
value of another type, which would cause the
programme to lose its meaning.

18: a+b=0b+a.



incomplete terms and let the machine determine the missing pieces. For exam-
ple, the user does not need to make explicit the types of all the values, and the
proof assistant can define notations so that the terms entered by the user are sim-
ilar to the notations they would use in a paper proof. In addition, proof automa-
tion tools are made available to the user to prove in a few commands a specific
class of statements corresponding to the stages of the proof on which an expert
mathematician does not wish to spend most of his time. These tools are what
make such a piece software a real proof assistant.

1.2.3 Contributions of this thesis

Proof mechanisation is only possible if automation solutions are made available.
One possible approach is to link proof assistants to automated theorem provers,
widely used in formal methods, in order to facilitate the proof of statements within
their reach. However, this requires formulas used on both sides to correspond to
each other, aligning logic, data types, operations, etc. More generally, the prob-
lem of proof transfer, on the scale of a single logical formalism, is the problem
of expressing the same mathematical concept in several different ways, without
any impact on the proofs, i. e., when a proof has been carried out using a repre-
sentation of a mathematical concept within the proof assistant, we do not want
to have to redo this proof manually using another representation of the same con-
cept. With the aim of solving an instance of the proof transfer problem in the CoQ
proof assistant, we propose TRAKT [12], a preprocessing tool for CoQ statements,
that makes the statements of a given theory converge to a canonical form in the
ideal format expected by a proof automation tool for this theory.

Other properties of the formal languages used in proof assistants can be exploited
for proof transfer, such as parametricity [13]. It is an interpretation of types as re-
lations, enabling to build tools that link a CoQ statement with an associated state-
ment that s the target of the proof transfer. In rich versions of parametricity, such
as univalent parametricity [14], one can extract a proof term from the witness!®
of the relation between both statements, and exploit it to concretely carry out the
proof transfer. However, univalent parametricity introduces axioms into CoQ in
order to work correctly, including cases in which a manual processing using no
axioms would be possible. We then present TRocQ [15], a second proof transfer
plugin for CoQ, more general than TRAKT, aiming to match the power of univalent
parametricity in as many cases as possible, while analysing the statement more
finely and using axioms in a smaller number of cases.

These two tools take the form of plugins for the CoqQ proof assistant. As such,
they rely on particular meta-programming techniques and their implementation
raises specific questions independent of their theoretical design. The chosen
meta-language for these implementations is CoQ-ELPI [16], a logic programming
language that offers a high level of abstraction in the manipulation of CoqQ terms.

The remainder of this thesis is organised in four parts: a technical introduction
defining the various concepts handled in the subsequent parts (§ 1), a presenta-
tion of both prototypes of preprocessing tools developed, TRAKT (§ Il) then TRocQ
(§ 111), as well as a section dedicated to implementation issues (§ 1V).
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[12]: BLoT et al. (2023), “Compositional pre-
processing for automated reasoning in de-
pendent type theory”

[13]: REYNOLDS (1983), “Types, Abstraction
and Parametric Polymorphism”

[14]: TABAREAU et al. (2021), “The marriage of
univalence and parametricity”

19: The witness of a relation R between two
values a and b is a proof that these two val-
ues are linked in the relation, i. e., a proof of
Rab.

[15]: COHEN et al. (2024), “Trocq: Proof Trans-
fer for Free, With or Without Univalence”

[16]: TassI (2018), “Elpi: an extension lan-
guage for Coq (Metaprogramming Coq in the
Elpi AProlog dialect)”
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Introduction

Formal methods are a major tool to increase the level of confidence that one can
putin computer programs. By introducing rigorous reasoning, they provide more
guarantees than more traditional software quality assurance methods such as
software testing, and are very popular in the development of critical software. Of
the many formal tools available, those with the most radical approach are proof
assistants, because in such software, the proofs themselves are guaranteed to be
formally correct. At the price of trusting a logical kernel made up of a few hundred
lines of code implementing the logical system at the heart of the proof assistant,
such software can then be used to check the compliance of programs with a spec-
ification or the validity of a mathematical proof.

Within a proof assistant, a programming language is used to describe the math-
ematical objects on which we wish to reason?’ and a proof language is used to
prove, step by step, statements expressed using the various data structures de-
fined beforehand. This thesis focuses on the CoQ [11] proof assistant, developed
in France in the 1980s. In this piece of software, the expressiveness of the pro-
gramming language used is such that it is also possible to carry out proofs in this
same language, including verification of proofs in the typechecker. This expres-
siveness is a real advantage for the user, first because they only have a single lan-
guage to trust, but also because it is possible to represent very abstract mathe-
matical objects in CoQ and to reason about the associated theories, which is not
the case of all formal tools. However, this expressiveness makes proofs very diffi-
cult to carry out, as they are represented with proof terms in this very advanced
language, whose very high level of abstraction in programming tasks becomes a
very low level of abstraction in the elaboration of proofs.

Proof automation in Coq is therefore the motivation behind numerous research
projects in computer science. Their main aim is to build a layer of abstraction
above the programming language of Coq, so that the user does not have to write
proofs manually in this language. The proof assistant then has a tactic language
allowing the proof to make progress step by step, by executing actions that are
intuitive for the user and authorised by Coq following verification of a fragment
of the final proof term, provided by the tactic. These tactics stepping from one
proof state to another are implemented at the meta level, using one of the meta-
languages available in Coq.

Some tactics implement a decision procedure, i. e., an algorithm able to decide
whether a statement contained in a theory is true or false, by automatically con-
structing the associated proof term. For example, the lia [17] tactic can auto-
matically prove a true statement that belongs to the theory of PRESBURGER arith-
metic. Other tactics reformulate the statement to prove, in order to make it sim-
pler to prove manually or more suitable for other automation tactics. Among the
latter are proof transfer tools, that allow proofs or statements expressed using
one encoding of a mathematical object to be reformulated using another encod-
ing of the same object, that the user deems more suitable for the proof they are
currently performing. Proof transfer is another kind of abstraction in proofs, al-
lowing to erase the differences inherent in the fact of encoding the same mathe-
matical object in several different ways in a proof assistant.

The main contributions of this thesis are the design of two preprocessing tools for
Coq statements, each responding from a specific angle to the problem of proof

20: For example, a computer program is rep-
resented by an abstract syntax tree obtained
from its source code.

[11]: The Coq Development Team (2022), The
Coq Proof Assistant

[17]: BESSON (2006), “Fast Reflexive Arith-
metic Tactics the Linear Case and Beyond”



transfer. This part provides the technical definitions needed to follow the de-
tailed presentation of these tools. We present the CoQ proof assistant, the real
proof assistance features it implements, as well as the CoQ meta-programming
plugin used throughout this thesis, CoQ-ELPI [16]. [16]: Tassi (2018), “Elpi: an extension lan-
guage for Coq (Metaprogramming Coq in the
Elpi AProlog dialect)”



A short primer
to the Coq proof assistant

In this chapter, we briefly present the language of Coq in order to introduce the
concepts we refer to in the rest of this manuscript. We first present in a gradual
way the core of the type theory implemented by the kernel and the associated
logical theory (§ 2.1), then we present the features CoQ adds on top of this theo-
retical basis (§ 2.2).

2.1 Types for proofs and programs

The proof assistant CoQis built around a kernel whose essential componentis the
typechecker of a dependently-typed A-calculus. This piece of software allows the
user to declare custom types called inductive types, with which they can repre-
sent the mathematical objects they wish to reason about. The language of CoQ
can also be interpreted as a logical system, making it a proof language. This sec-
tion studies these different aspects.

2.1.1 The pure A-calculus

Introduced in the 1930s by CHURCH [18], A-calculus is a minimalist programming
language whose syntax defines only three classes of terms: variable, abstraction,
application.

t,u = x| Az.t|tu

The base object of such a language is the function, represented by the case of the
abstraction Az.t where x isa bound variable! and t is the body of the function.
What makes this language a calculus is the -reduction rule, that allows comput-
ing the application of a function to an argument? by substituting the argument
for the function’s bound variable:

Az.t)u tzi=uy]

Substitution is defined in such a way as to avoid capture — the fact that a variable
that s free before substitution becomes bound after substitution — as this would
give a term with a different meaning from the expected term. Two A-terms that
differ only in the name of their bound variables have the same behaviour with
respect to B-reduction. They are then said to be a-equivalent. We can define
an equivalence between terms called conversion® by the transitive symmetrical
reflexive closure of B-reduction and a-equivalence.

Many programming concepts can be encoded using A-terms: integers, booleans,
pairs, lists, trees, etc. It is even possible to encode recursion using fixed-point
combinators, like the Y combinator:

Y = M.z f(zz)) (A\z. f(zx))

Indeed, Y f reducesto f (Y f), then f (f (Y f)), and so on indefinitely. Itisin
fact possible to encode any TURING-computable program in a A-term.*

2

2.1 Types for proofs and programs 9

2.1.1 The pure A-calculus . . . ... 9
2.1.2 Simple types and the CurRy-
HOWARD correspondence . . . 10

2.1.3 The Calculus of Constructions 13

2.2 An expressive programming

language . ........... 14
2.2.1 Universes and polymorphism . 14
2.2.2 Inductivetypes . . . . ... .. 16

[18]: CHURCH (1933), “A set of postulates for
the foundation of logic”

1: A bound variable, as opposed to free vari-
ables, only has meaning inside a function. It
is used to represent the future argument that
will potentially be given to this function when
it is applied, by binding this argument to a
name.

2: Such atermis called a B-redex.

3: We denote t = wu for “t is convertible to

»

u.

4: TURING-computability of a program corre-
sponds to the possibility to encode it on a
TURING machine. TURING himself proved that
A-calculus is equivalent to his machine [19],
i.e., thatitis TURING-complete.
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Reducing a term is done by applying the B-reduction rule as much as possible in
this term. The path taken while reducing the term is thus not necessarily unique.
If a reduction path arrives to a term containing no more redex, i. e., it cannot be (-
reduced further, this final term is said to be a 8-normal form. The property called
normalisation is the existence of a normal form for any term in the calculus.® As
the Y combinator shows, A-calculus does not respect this property because it
allows encoding general recursion, i. e., arbitrary loops.

2.1.2 Simple types and the CURRY-HOWARD correspondence

In order to obtain several interesting properties, including normalisation, we can
restrict the set of terms that can be defined in A-calculus. We then introduce
types [20], i.e., annotations on terms, with typing rules enabling us to infer or
verify these types, and by extension to describe the terms we wish to authorise
in the calculation, anill-typed term being rejected.

Definition of simply-typed A-calculus The function being the base object of A-
calculus, a type is defined as either a variable a belonging to a finite set of base
types, or a functional type from a domain to a codomain using an arrow:

T u= « | T—T
Then, we annotate functions by adding a type to their bound variable:
t,u == z|Az:7.t|tu

A term can only be well typed in a typing context, i. e., a list of associations be-
tween variables and types:

r == (| Lz:7

Atypingjudgment T' |- ¢ : 7 assertsthatterm ¢ hastype 7 incontext I'. Inorder
to obtain a typing judgment on a term ¢, one composes typing rules together by
induction on the syntax of ¢, building a typing derivation whose conclusion is the
typing judgment on term ¢. The typing rules for this calculus called simply-typed
A-calculus and denoted A_, are then the following:

Z:TEF(V ) o:vht:7
— (VAR
Fkz:7 -

LAM
I‘I—)\w:T.t:T—)T'( -)

F'kt:r—>7 Thlu:T
Fktu:7

(APP_,)

The A_, calculus can be used to write sensible programs whose results can be ob-
tained by computing their normal form. For example, one can add to the calculus
abase type N to represent natural numbers, as well as two constants 0 : N and
S : N — N to represent zero and the successor, i. e., the base components of
PEANO arithmetic. By using these values, one can then build programs manipu-
lating natural numbers.

5: If all the reduction paths lead to a normal
form, the calculus respects the property of
strong normalisation.

[20]: CHURCH (1940), “A formulation of the
simple theory of types”

Figure 2.1: Typing rules for A_,
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The CuRRY-HOWARD correspondence By associating the arrow — of the func-
tionaltype with logicalimplication, simply-typed A-calculus actually corresponds
to the logical system of natural deduction. This crucial link between logic and
programming is called the CURRY-HOWARD correspondence. Indeed, by consider-
ing base types as propositional variables, simple types can be seen as statements
and typing rules as rules of the associated logical system. The typing context cor-
responds to a set of hypotheses, with free variables and constants being axioms
— properties considered as proved before any demonstration begins. The VAR_,
rule describes the case of hypotheses: if a property is in the context, then it is
provable. The LAM_, rule makes it possible to introduce an implication by noting
that if 7/ is provable from a proof of 7 in a context, then in this context 7 im-
plies 7. Furthermore, the APP_, rule is the famous logical rule of modus ponens:
if proposition T is provable and 7 implies 7/, then 7’ is also provable. If we aug-
ment A_, with additional constructions such as the product® or the sum,” we can
extend the correspondence to propositional calculus. Indeed, a type 7; X 7, cor-
responds to a conjunction of two propositions, and a type 7; + 7, corresponds
to a disjunction. Finally, false — also denoted as | — is associated to what can-
not be proved, i. e., types without any inhabitants.

Moreover, this correspondence between statements and typesis also a correspon-
dence between proofs and programs. In a function Az : 7.t of type 7 — 7/ that
constructs an inhabitant of 7/ from an inhabitant of 7, the terms & and t are
therefore proof terms. A proved statement corresponds to the existence of a term
that inhabits the type of this statement. The constants added to the global con-
text are then axioms. In fact, a constant k£ : 7 is a variable k that we assume
inhabits the type 7. The statement corresponding to 7 is therefore proved, but
by a witness that has no computational content. The analogy naturally extends
to other constructions. Thus, a term that inhabits a product type 7y X 7, is a
pair of proofs (¢;,t5) where ¢; is a proof of 7y and t, is a proof of 7,, and a
term that inhabits a sum type 7, + 7, is either inl¢; where ¢; is a proof of 7,
or inrt, where t, is a proof of 7.

The BARENDREGT cube  Simply-typed A-calculus is the starting point of a hand-
ful of generalisations. Indeed, it benefits from a number of interesting properties,
including preservation of typing by reduction,® uniqueness of typing, and logical
consistency.’ In particular, its type system rejects any terms whose reduction
does not terminate, such as fixed-point combinators. For instance, the definition
of the Y combinator applies a subterm z to itself, which is impossible in A_, ,
as z cannot have both a functional type 7 — 7’ and the type of its domain 7.
However, it lacks the expressiveness of pure A-calculus. For example, in pure A-
calculus, the term Az. z represents the identity function, and can be applied to
any term. In simply-typed A-calculus, every function is defined over a single type.
If we want to apply it to terms of different types, we need to build a distinct in-
stance of identity for each type used. Various extensions of A_, were designed
in the second half of the 20" century, with the goal of obtaining a more expres-
sive programming language or logical system, both points of view being available
thanks to the CURRY-HOWARD isomorphism.

In 1991, BARENDREGT [21] proposed to represent these extensions as the edges of
acube® taking A_, asitsorigin and introducing a different form of abstraction on
each axis. These forms of abstraction can be described using the concept of sort,
i.e., the type of a type. We introduce the % sort — called type — and declare that
all simple types have % as their sort. For example, N : x and N — N : %. This
gives us a way to characterise more abstract constructions. For example, a term

6: The product type allows us to represent
pairs of values. A value of type A x B is
the combination of a value of type A with
a value of type B. This is the basic building
block for representing the concept of tuple
presentin many programming languagesin a
theoretical way. Its constructor is the follow-
ing:
(,-):A-B—>AXB

7: Thesum A + B is a construct that con-
tains a value of one type from two possibil-
ities A and B. In languages with algebraic
types, it is used to perform case analyses, for
example between a valid result and an error
— result in OCAML, Either in HASKELL, etc.
Traditionally, a sum is constructed by one of
the following constants:

inl: A—- A+ B
inr: B— A+ B

8: Ifaterm ¢ : 7 reduces to a term ¢/, then
t’ : T — also called subject reduction.

9: It is impossible to prove L in the logical
system from an empty context.

[21]: BARENDREGT (1991), “Introduction to
generalized type systems”

10: Thus called A-cube or BARENDREGT cube.
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constructing a type from another type would have sort x — %. We introduce the
[] sort — called kind — as the sort of all sorts. For example,x : [1,%x — % : [ and
N — * : []. We then identify the different forms of abstraction of a A-calculus by
allowing one or more of the following classes of functional types in the calculus,
defined by a pair of symbols chosen from x and [, representing the sort of the
domain and codomain of the authorised functional type:

- Class (%,%) describes terms that depend on terms. For example, this is
the case for the addition of the natural numbers 4, : N = N — N. This
class of terms is definable in A_, and allits extensions.

- Class ([J,[), authorised in calculus Aw and its extensions, describes the
types that depend on types. These are type constructors. For example,
we can imagine a term list used to describe the type of a list when it is
provided with the type of the elements in the list. Thus, list N is the type
of lists of natural numbers.

- Class ([, ) ,authorised in calculus A\, andits extensions, describes terms
that depend on types. These are constructors of terms belonging to poly-
morphic types. For example, we can imagine a constant cons that adds
an element to a list. This constant depends on the type of the elements in
the list.

- Class (x,),authorisedin calculus Ap andits extensions, describes types
that depend on terms. This abstraction is that of dependent types, the least
common in functional programming languages. It can be used, for exam-
ple, to construct a fixed-length integer array type using a constant narray
that depends on an integer n describing the size of the arrays that will
have type narray n.

All these abstractions can then be represented on three axes using a cube illus-
trated on Figure 2.2.1' By generalising this cube to calculi with more than two
sorts, we obtain the family of Pure Type Systems [22, 23].

Each form of abstraction adds expressiveness to the language but potentially
weakens its theoretical guarantees. Functional languages that have been con-
cretely implemented and are used at an industrial level, such as HASKELL, can
hardly be placed on the cube, as their type system includes numerous pragmatic
features that either do not necessarily correspond to an end of the cube — Gen-
eralised Algebraic Data Types (GADT), HINDLEY-MILNER-style polymorphism, etc.
— or stray away from a logical interpretation — non-termination. However, their
theoretical basis is a restriction of A, , preserving decidability of typing and com-
plete inference for practical purposes. As for the CoqQ proof assistant, it contains
an implementation of the language corresponding to the point of the cube lo-

Figure 2.2: The BARENDREGT cube.

11: We represent on the cube only the lan-
guages cited here.
[22]: BERARDI (1988), “Towards a mathemat-
ical analysis of the Coquand-Huet calculus
of constructions and the other systems in
Barendregt’s cube”

[23]: TERLOUW (1989), “Een nadere bewijsthe-
oretische analyse van GSTT’s”
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cated furthest from the origin, Ay or the Calculus of Constructions (CoC)*? [24].
It therefore has all the abstractions described previously, while retaining a con-
sistent logical interpretation, that of the intuitionistic predicate calculus.

2.1.3 The Calculus of Constructions

The syntax of the Calculus of Constructions adds two constructions to that of
simply-typed A-calculus, the dependent product or II-type and the universe:

A,Bit,u == z|dr:At|tu|Iz:AB| O

Dependentproduct Thedependent productis used to describe dependent func-
tional types. Indeed, in the A — B arrow type of simply-typed A-calculus, the
codomain B does not itself depend on domain A, these terms being both de-
fined outside this functional type. In adependent A-calculus, we use a dependent
product IIz : A. B which is a binder in the same way as an abstraction. Thus,
just as the body ¢ of a function Az.t is defined as a function of the argument
z that will be supplied to it when it is applied, the codomain B of a dependent
product can depend on the bound variable x over which it quantifies.'® Indeed,
the logical interpretation of the dependent product is universal quantification.
For example, if we denote as narray n an array of natural numbers of size n,
the term constructing an array of size n by repeating a given value has type:

nreplicate : IIn: N.N — narrayn

The nreplicate term therefore has type N — narray n for all integer n sup-
plied as the first parameter. The term nreplicate 4 0 represents an array of
type narray 4 filled with zeros, (0,0, 0, 0). This quantifier takes on its full log-
ical meaning when used in the type of properties to prove:

natpos : IIn:N.n >0

Universes and universe hierarchy Note that types are no longer a syntactic cate-
gory in their own right, but terms like any others, and as such can be manipulated
asfirst-classvaluesin the language. Thisis a feature of languages with dependent
types. Because they are terms like any others, it must be possible to write types
tothe left of a typing judgment. This is the reason for the existence of the universe
[], which is a sort, i. e., the type of types. In this way, we can generalise the array
type narray and the associated function nreplicate to polymorphic arrays:

array : L0 —-N—=0O
replicate : IIA: .IIn: N. A — array An

As the types of a dependent A-calculus are also terms, the [ sort can itself be on
the left of a typing judgment. However, allowing [ : [ breaks the logical con-
sistency of the theory: this is the GIRARD paradox [25], the type-theoretic equiva-
lent of the RussELL paradox** of set theory, according to which there can be no
set containing all sets. One solution is to use an augmented version of the Calcu-
lus of Constructions called CC,,, in which every universe [J; is annotated with a
natural number 4 representing its level.*> We can thus safely postulate that each

12: Abbreviation partly responsible for the
name of this proof assistant.

[24]: CoQUAND et al. (1986), “The calculus of
constructions”

13: When B does not depend on &, naming
the variable is unnecessary, and we can use
notation A — B as syntactic sugar for:

II :A.B

[25]: GIRARD (1972), “Interprétation fonc-
tionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur”

14: RussktLL initially explained the paradox
in a letter sent to FREGE in 1902. Later, FREGE
published the contents of the letter [26].

15: In the rest of this thesis, for the sake of
readability, when a universe level is not im-
portant in the discourse, we shall leave it im-
plicit and write [J.



2 Ashort primer to the CoQ proof assistant 14

universe is included in the next one, hence the name of universe hierarchy:

-0, : O,

Typingrules The typing rules for CC,, are available in Figure 2.3. The LAM rule
differs from its simply-typed version in that the type of ¢ can now depend on
variable z, so the abstraction is typed by a dependent product. For the same
reason, the App rule now performs a substitution in the type of an application, in
order to instantiate the bound variable z in the codomain B.

————— (SoRrT) —
| A B P P FFz:A

TFA:[O I'z:A+t: B
T'FXz:At:Ilz: A.B

(Lam)

T'Ht:1Iz: A.B ThFu:A

(APP)
F'Ftu: Blz :=u]
FFA:O; Fiz: AFB:L; 'Ft:A TFA=B
(P1) (Conv)
T'FIz: A B : Upayi,j) I'-t:B

2.2 Anexpressive programming language

Several proof assistants, such as CoQ or LEAN, are based on close variants of the
Calculus of Constructions, but make different choices regarding the details of
their underlying formalism. This section details the major choices implemented
in CoQ concerning universes and inductive types.

2.2.1 Universes and polymorphism

Although initially introduced to avoid the GIRARD paradox and maintain logical
consistency, the multiple universes present in a type theory influence its logical
power and behaviour, depending on the new definition of the SOorT and P1 typing
rules.

Impredicativity, cumulativity The universe hierarchy of CC,, is said to be pred-
icative because of the Pi typing rule. This rule states that a dependent product
lives in a universe that is larger than those of its domain and codomain. This
means that each quantification in a term increases its universe level, depending
on the universe of the type over which we are quantifying. The CoQ proof assis-
tantimplements this hierarchy by representing [J, with the term Type@{i},'® but
it also includes other universes, such as a P universe represented by the term
Prop called the universe of propositions. This universe has the particularity of be-
ing impredicative, i. e., when the codomain of a dependent productis P, then the
Pi rule puts the entire dependent product in P regardless of the universe of the

Figure 2.3: Typing rules for CC,,

16: In many cases, we leave the universe im-
plicit and write Type. This feature called typ-
ical ambiguity is presented with the other in-
ference features of Coq, in section 3.1.
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domain. As the behaviour of this universe in typing is different from that of pred-
icative universes, it is considered present only in the first prototype developed
during this thesis.

The SoRrrT rule defines the inclusion policy between universes. CoqQ then defines
an additional version of the rule to define the behaviour of P, but also another
rule known as cumulativity, allowing a universe in the hierarchy to be included in
any universe above it:

1<J

———— (CumuL)
reE0; -0

This generalisation of the SORT rule presented in Figure 2.3 makes the calculus
more flexible, but it also makes is harder to reason about universe levels, because
of the many additional cases it allows.

Universe polymorphism Typing rules mentioning universe levels impose con-
straints on these universes. Historically, in CoQ, each occurrence of a universe is
associated with a global variable representing its level. These constraints on the
order between universes that appear when typechecking terms are then stored
in a global constraint graph that must always be valid, i. e., acyclic. There is no at-
tempt to determine an exact integer to be assigned to each universe level, but the
validity of the universe constraint graph guarantees the existence of a solution,
which is sufficient to maintain logical consistency in the current development.
For example, here is the definition of a type and a constructor for that type:

Box : [, = Upg
box : TA:[],.A—Box A

Levels a, B and «y are then constrained by all the uses of these two constants.*’
In some cases, this approach can cause typing errors. For example, identity can
conceptually be applied to any term:

id:TMA:0;. A— A
idNO: N
id(IN—N) (A :N.n): N—N

However, in this variant of type theory, applying it to itself is impossible. Indeed,
if we apply identity to itself, the first parameter of the application is the type pa-
rameter, which must live in . This parameter is the type of the identity:

TA: 5. A— A

Its domain is L5 of type [s,; and its codomainis A — A of type [s. By the
Pirule, the type of identity therefore lives in universe [s, ;, which is higher than
[s. Consequently, it is impossible to apply identity to itself.

In terms that do not exploit a particular level of universe but the relation between
different universes within the same term, one way to obtain the desired behaviour
is to consider the universes as bound variables. By doing this, we define not a sin-
gle constant but a family of constants indexed by a list of bound universes that
we then call a universe instance. Identity becomes the following term, indexed
by a universe variable ¢:

id,:TMA:[0,, A= A

17: The very definition of box contains an
occurrence of Box, adding the following
constraint by rules App and CumuL:

Yy< o
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The well-typed version of the application of identity to itselfis then id;; id;. This
feature is called universe polymorphism [27], and identity is said to be a polymor-
phic constant over universes, i. e., a universe-polymorphic constant. Each occur-
rence of a universe-polymorphic constant is then constrained independently in
the universe constraint graph, rather than globally in the monomorphic case.

Nevertheless, the practicalimplementation of universe polymorphism raises non-
trivial algorithmic questions. The answer chosen by Coq is therefore not irrevo-
cable and continues to evolve in current versions of the software.

2.2.2 Inductive types

High-level programming languages allow developers to define custom data types.
In statically typed functional languages, these are traditionally Algebraic Data
Types (ADTs), or even Generalised Algebraic Data Types (GADTs). The CoQ proof
assistant features a version of ADTs, extended to dependent types and logically
consistent, called inductive types [28].

Definition and pattern matching For example, consider the definition in CoqQ of
the inductive type nat, corresponding to the theoretical type of natural numbers
N taken as an example more than once previously:®

Inductive nat : Type :=
| 0: nat
| S : nat = nat.

This definition includes the definition of the nat type constructor, both construc-
tors 0 and S, as well as the registration of these constants in the typing and reduc-
tion rules of CoqQ specific to inductive types.® The definition above states that a
value of type nat is constructed from one of its two constructors. It is therefore
possible to perform a case analysis on any value of type nat to find out its head
constructor, by doing a pattern matching:

Fixpoint add (n; n, : nat) : nat :=
match n, with
[0=n
| Sn =S (add n, n)
end.

According to the CURRY-HOWARD correspondence, pattern matching also repre-
sents the case analysis of proof theory. Consequently, the typing rule of pattern
matching must check its exhaustivity, in order to make it impossible to forget a
case.?’ Coq therefore prohibits the definition of partial functions, whereas a func-
tional language further away from a logical interpretation would simply give a
warning from the compiler in such cases. The Fixpoint keyword indicates that
the definition is recursive. The underlying A-term then uses a fix recursion op-
erator whose typing rule checks that recursive calls are structurally decreasing,
i.e., the function is called only on subterms of the argument of the current call.
This allows recursion while guaranteeing that all programs terminate, as non-
termination causes logical inconsistency.

These features are crucial in justifying the extra confidence that can be placed in
a CoQ proof over a paper proof. However, the terms considered in the following
parts of this thesis do not contain pattern matching, which is why the previous

[27]: SozEAu et al. (2014), “Universe polymor-
phismin Coq”

[28]: PAULIN-MOHRING (1996), “Définitions In-

ductives en Théorie des Types”

18: This type would be declared in the fol-
lowing way, in HASKELL and in OCAML:

data Nat = 0 | S Nat
type nat = 0 | S of nat

19: The definition of an inductive type also
includes the definition of the induction prin-
ciples on this type, presented at the end of
the chapter.

20: Itis even possible to declare a type with-
out constructors. As there is no way to build
avalue in this type constructively, it encodes
the concept of falsity.
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section only deals with the core of the theory, CC,,, and the rest of this thesis
only makes passing mention of pattern matching.

Datastructures Inductive types can be used to define many different data struc-
tures, including different encodings of the same mathematical concepts. For ex-
ample, here is an example of binary encoding of natural numbers:

Inductive bin_nat : Type :=
| b0 : bin_nat
| bpos : positive — bin_nat.

Inductive positive : Type :=
| pH : positive
| pI : positive — positive
| p0 : positive — positive.

Abinary numberis eitherQ represented by b0, ora non-negative numberencoded
starting from the least significant bit, p0 representing 0, pI representing 1, and
pH being the first 1 at the head of the number, with which all numbers start since
the case of b0 has been eliminated. Here are some binary numbers and their
representation in this format:

1 (0b1) bpos pH
2 (0b10) + bpos (p0 pH)
6 (0b110) > bpos (p0 (pI pH))

It is possible to use both types nat and bin_nat for representing natural num-
bers. This diversity offered by the proof assistant is at the heart of the questions
addressed during this thesis.

One can also define data structures that make full use of polymorphism and de-
pendent types. For example, here are definitions of linked lists and a function
that computes the length of a list, in Coq:

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A > list A - list A.

Fixpoint length (A : Type) (1 : list A) : nat :=
match 1 with

| nit _ =0
| cons _ _ 1" = S (length 1')
end.

The list type takes an argument A in its definition, so it is a polymorphic type:
one can build values of type list nat, list (list nat), list (nat = nat),etc.
The fact that the argument is located before the announcement of the universe in
which theinductive type livesin the head of the definition — character : —makes
itaparameter, i.e.,allthe constructors listed below invariably build values of type
list A. The types of the constructors therefore contain a quantification over the
parameter, left implicit in the definition of the inductive type but clearly visible
when it is used: the branches of the pattern matching in the definition of length
include this first argument, in an ignored form _ because it does not contribute
to the function’s output value. Indeed, the real types of constructors for list are
the following:
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nil : forall (A : Type), list A
cons : forall (A : Type), A = list A - list A

Finally, dependent inductive types can be defined, such as the type of vectors of
fixed size:

Inductive vec (A : Type) : nat = Type :=
| vnil : vec A O
| vcons : forall (n : nat), A = vec A n = vec A (S n).

Here, the second argument to give to vec in order to obtain a type is a value
of type nat corresponding to the length of the vector. As this value is located
in the type of vec, after character :, it can change from one constructor to an-
other. It is therefore an index and not a parameter. Pattern matching on a value
v of type vec A n is then a dependent pattern matching, since it performs both
a case analysis on the head constructor of v and on the head constructor of the
value n located in the type of v. Furthermore, dependent pattern matching al-
lows eliminating impossible cases. To illustrate this point, here is the definition
of a dependent function that reads the head value of a vector:

Definition head (A : Type) (n : nat) (v : vec A (Sn)) : A :=
match v in vec _ m

return match m with 0 = nat | S _ = A end

with

| vnil _ = 0

| vcons _ _a _ = a
end.

As this function makes no sense in the case of an empty vector, it is only defined
onvectorsoftype vec A (S n) fora given n. The pattern matchingin CoQ makes
it possible to specify the type of the inspected value by means ofan in clauseand
thetype of the value returned in the branches by means of a return clause. Inthe
case of dependent pattern matching, one can make the type of the return value
depend on the type of the inspected value. In the case of head, we bind the size
of the vector to a variable m and we state that the pattern matching will return a
value in a type that depends on the value of m. If m is 0, a natural number will be
returned, otherwise it will be a value of type A. The pattern matching branches re-
flect this case analysis in the return type, because the branch of the empty vector
returns 0 and the other branch returns the head value a of the vector, which is of
type A. As the value v is never an empty vector, the pattern matching will never
actually take the first branch, but it must be defined for exhaustiveness reasons.
As the case of the empty vector is meaningless but still needs to be defined, we
use an arbitrary return type for this case in the return clause, but trivial to in-
habit, so that the associated branch is easy to fill. In this case, we choose nat
and give the inhabitant 0. Thanks to the expressive power of dependent types,
this function is well typed and the type system guarantees that it can never be
applied to empty vectors.

Encoding additional constructs Inductive types in CoQ can also be used to im-
plement other constructions frequently used in type theory. Here are examples
of definitions for the product type x and the sum type +:

Inductive product (A B : Type) : Type :=
| pair : A > B — product A B.

18
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Inductive sum (A B : Type) : Type :=
| inl : A > sum A B
| inr : B = sum A B.

Apairoftype A x B isbuilt using two values of type A and B, and a sum of type
A + B has two cases, either a value of type A, or a value of type B.

Dependent inductive types can also be used to encode more advanced construc-
tions. A dependent pair £z : A. B isa pair (z; b) in which z is a value of type
A and b isavaluein atype B thatis allowed to depend on x. Such a construc-
tion can be taken as one of the base constructions of the language under study,
with the same status as the II-type or the abstraction, or it can be encoded us-
ing terms of the language. In CoQ, a dependent pair can be represented by the
following type:

Inductive sigma (A : Type) (B : A = Type) : Type :=
| dpair : forall (a : A), B a = sigma A B.

A pair dpair a b contains avalue a of type A and avalue b of atype B a that
dependson a.

A second advanced construction that can be defined using dependent inductive
types is equality, in a version called propositional equality. An equality z = y
can be encoded asaterm eq A x y,where A represents the type of x and y:

Inductive eq (A : Type) (a : A) : A = Prop :=
| refl : eq A a a.

Equality therefore has only one constructor describing the fact that the only pos-
sible value equal to a value a is a itself. Thanks to dependent pattern matching,
in a proof containing a hypothesis e of type eq A x y, when typing allows it, per-
forming a case analysison e exposes the only possible case, i. e., that y is exactly
the term x, in the sense that these terms become convertible. This case analysis
then allows replacing all the occurrences of y with x and the occurrences of e
with refl A x. Conversely, when a property of type eq A x x must be proved,
it is sufficient to supply the refl A x term to complete the proof. Since con-
version includes the reduction rules of the calculus, the refl constructor can
be used even when the equality has two syntactically different but convertible
terms. For example, we can use refl to prove the following property, represent-
ing14+1=2:

eq nat (add (S 0) (S 0)) (S (S 0))

Records Thankstoinductive types, we can also encode records, presentin many
programming languages to structure data. Here is the Coq definition for a record
type representing non-negative coordinates in two dimensions:

Record Coord := { x : nat; y : nat }.
Arecord is then defined by giving a value to each field:
Definition coord_origin := {1 x := 0 ; y := 0 3.

The definition of a record type is equivalent to the definition of an inductive type
with a single constructor taking two arguments, one for each field of the record,
and two projection functions to extract each field from aninhabitant of the freshly
created type.

19
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Inductive Coord : Type := BuildCoord : nat —> nat — Coord.
Definition x (c : Coord) : nat := match ¢ with BuildCoord x _ = x end.

Definition y (¢ : Coord) : nat := match ¢ with BuildCoord _ y = y end.

In non-dependent programming languages, a record can be encoded by a tuple,
since this is just a construction allowing several values to be grouped together
in the same term, by naming them using projections. In a dependent context
such as that of CoqQ, an analogous encoding of records requires X-types. Since
record types are in fact inductive types, they can naturally be polymorphic or
dependent, and each of their fields is allowed to depend on the previous fields.
This functionality is exploited in the definition of mathematical structures in the
proof assistant. For example, a monoid is a type M with an associative opera-
tion o : M — M — M and an element my : M neutral for ¢. In CoQ, this
mathematical structure can be represented with a record type that, by virtue of
the CURRY-HOWARD correspondence, contains both data — the definitions of
and o — and properties** — the proofs of associativity of ¢ and neutrality of m,
for o:

Record Monoid (M : Type) := {
mzero : M;
mconcat : M > M —> M;
mconcat_assoc : forall (m; m, mg : M),
mconcat m;, (mconcat m, m;) = mconcat (mconcat m, m,) ms;
mzero_neut_mconcat_1 : forall (m : M), mconcat mzero m = m;
mzero_neut_mconcat_r : forall (m : M), mconcat m mzero = m

3.

An instance of a mathematical structure on a given type is therefore an instance
of the record type, so its data can be used in programs and its properties in proofs.
This approach differs in particular from that chosen by HASKELL, whose standard
library defines several structures, including the monoid, but also the functor or
the monad, only by their data [29]. As HASKELL is not used to carry out proofs
internally in the language, compliance with the various laws of mathematical
structures depends on the user’s discipline in declaring instances of these struc-
tures. Itisthen possible to defineillicitinstances that, despite their utility — these
structures provide abstractions that are useful in programming —, make invalid
any reasoning involving the laws of the structure carried out on a program that
uses these instances. As the laws are directly in the record type, any instance of
a structure defined in Coq is forced to abide by them, as its definition includes
their proofs.

From an inductive definition, CoQ automatically generates and proves an induc-
tion principle, i.e., a lemma that can be used in proofs to carry out reasoning by
induction on a value of this inductive type. Here is the induction principle gener-
ated when defining the type nat :??

Lemma nat_rect : forall (P : nat — Type),
P 0 — (forall (n : nat), Pn = P (S n)) = forall (n : nat), P n.

Note that this induction scheme describes the traditional mathematical induc-
tion on natural numbers: if a property is true for 0 and is transmitted from any
number to its successor, then it is true for all natural numbers. The induction
scheme for lists is similar, with a hypothesis for the empty list and a hypothesis
forthe addition of a value at the head of the list. As the type of lists is polymorphic,
so is the generated induction principle:

21: Also called laws.

[29]: WADLER (1995), “Monads for functional
programming”

22: In reality, a separate induction principle
is generated for each existing sort in the cal-
culus, to cover all possible codomains for
property P, but we are only interested in the
version for Type in this thesis.
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Lemma list_rect : forall (A : Type) (P : list A — Type),
P (nil A) - (forall (a : A) (1 : list A), P 1 = P (cons A a 1)) =
forall (1 : list A), P 1.

Well-formednessandinductionschemes Apartfrom the presence of dependent
types, the major difference between inductive types in CoQ and algebraic data
types available in other programming languages is that when they are declared,
the proof assistant ensures that it is possible to reason inductively about these
types. This means that not allinductive types can be defined in CoQ. Forinstance,
the following inductive type, whose values are constructed from a function pro-
ducing values in this same type, is invalid in CoQ:

Fail Inductive I : Type :=
| K: (I—>1I)->1I.

Indeed, the occurrences of I in the type of K are not all covariant, and the defi-
nition of this inductive would allow proving the following induction principle:

I_rect :
forall (P : I — Type),
(forall (f : T >I) (i :I),P(fi) > P (K f)) —»
foralli : I, P1i

However, by instantiating P with fun
L and break logical consistency:

= False, it becomes possible to prove

I_rect (fun _ = False) (fun _ _ F = F) (K (fun i = i)) : False

As a result, CoQ has a positivity checker, i.e., a criterion for well-formedness of
inductive types, which ensures that logical consistency is maintained if all induc-
tive types meet it.3

23: This criterion being correct but not com-
plete, there are theoretically valid inductive
types that are not accepted by the proof as-
sistant.



Proof assistance

This section discusses the various features making CoqQ a genuine proof assistant.
Itis a partial overview covering the elements showing up in the rest of this thesis.
Firstly, Coq offers inference features allowing the user to only partially write the
terms and delegate the rest of the work to the proof assistant (§ 3.1). Secondly,
the software features a proof mode with a dedicated language, so that it is pos-
sible to make progress in a proof step by step and view its current state at any
time, without having to write the proof terms manually (§ 3.2). Thirdly, the proof
assistant provides a means of easily exploiting equality and more generally equiv-
alence relations between terms, so that they are interchangeable in a relatively
transparent way (§ 3.3).

3.1 Inference

Most statically typed languages come with inference features: HINDLEY-MILNER-
style languages [30, 31] leading the way, their theoretical basis being designed
with the aim of complete inference, but also more common languages. For exam-
ple, in modern versions of C++, the use of the auto keyword allows letting the
compiler attempt to find the type of a variable or the return type of a function. In
the case of Coq, the programming language is extremely complex, so inference
systems need to be more advanced. In this section, we present various features
that allow the user to implicitly leave holes in terms when some information can
be inferred from the elements they supply.

3.1.1 Unification

The complexity of the language of CoQ brings a degree of verbosity in terms, that
can sometimes amount to obfuscation. For example, here is a CoQ term corre-
sponding to the concatenation of two lists of integers [1]¢[2, 3], in its raw version
presented in the previous chapter:

mconcat (list nat) (list_Monoid nat)
(cons nat (S 0) (nil nat))
(cons nat (S (S 0)) (cons nat (S (S (S 0))) (nil nat)))

This assumes the existence of a monoid instance for lists in the context:

list_Monoid : forall (A : Type), Monoid (list A)

Unificationvariables The repetition of type nat n+1 times to build a list of n
values seems redundant to the user, but it is necessary for the resulting term to be
well typed. The information is indeed superfluous, since it suffices, for example,
to systematically give as first argument for cons the type of the value added at
the top of the list, i. e., the next argument. The instantiation of list_Monoid to
nat can also be inferred from the context. The actual implementation of CoqQ has
a special term constructor called unification variable designed specifically to be
able to leave holes in terms. The example above can then be written as follows:

3.1 Inference . ........... 22
3.1.1 Unification . ... ... .... 22
3.1.2 Inference and ad hoc polymor-
phism . ............. 25
3.2 Tactics and automation . . . . 26
3.2.1Theproof mode ... ... .. 26
3.2.2 Automated proof tactics . . . . 29
3.3 Rewriting and proof transfer . 31
3.3.1Rewriting . . ... ... .. .. 31
3.3.2 Extension to equivalence . . . 32

[30]: HINDLEY (1969), “The principal type-
scheme of an object in combinatory logic”

[31]: MILNER (1978), “A theory of type poly-
morphism in programming”



mconcat _ (list_Monoid _)
(cons _ (S 0) (nil _))
(cons _ (S (S 0)) (cons _ (S (S (S 0))) (nil )))

Foreach hole left in the term, CoQ creates a unification variable. The typechecker
must then solve all the unification problems and fill in the holes before accepting
the term. For example, the unification problem for the first list is the following:

cons ?T (S 0) (nil ?T) : list 2T

Thanks to the type of S 0, we caninferthat ?T istype nat and know that the rest
of the list must have type list nat, which triggers the next unification problem
nil 2T : list nat. Atthe end of the inference process, all the annotations have
been added to the term without any help from the user.

Implicit arguments The inference features of CoQ allow going beyond the ex-
plicit creation of unification variables by leaving them implicit. Indeed, as the first
argument of constructors of type list, the type parameter, is inferrable from the
context, it can be made implicit by using special syntax in the declarations, or by
executing dedicated CoQ commands. In the case of an inductive type, it is not
necessarily desirable to make the parameter implicit everywhere, as this would
allow declaring values of type list without mentioning this parameter, which
could lead to confusion. In this case, the following commands are used for con-
structors:

Arguments nil {_}.
Arguments cons {_}.

Thus, the constructor of type list always needs an explicit parameter, but a
value of type list nat can be constructed just by writing nil. One can also de-
clare the parameter of list_Monoid and the parameter of mconcat as implicit.
The above example then becomes the following one:

mconcat list_Monoid
(cons (S 0) nil)
(cons (S (S 0)) (cons (S (S (S 0))) nil))

In the definition of a polymorphic function, one can use a syntax that indicates
that the polymorphic parameter is implicit. For example, the head of the declara-
tion of the length function defined in the previous chapter becomes the follow-
ing, where the braces declare an argument as implicit:

Fixpoint length {A : Type} (1 : list A) : nat.
We then write length 1 asina non-dependent language.

In the context of dependent types, it is even possible for a value to be inferrable
without being a type. For example, the head function retrieving the head of a
vector takes as argument an integer that appears in the type of the next argu-
ment, the vector whose head we want to extract. This integer can therefore be de-
clared as implicit and inferred for each occurrence of head. Thus, one can write
head (vcons 4 vnil) without giving any vector size, neither in constructors of
type vec norinthe head function.

3 Proof assistance

28



Notations In order to make terms even more readable, CoqQ offers a notation
system adding cases to the parser to associate a particular syntax to some terms.
These notations can be infix and the user can define priorities between them. In
particular, the standard library defines notations for arithmetic and lists, in order
to obtain terms in a syntax that is very close to that of other programming lan-
guages. Notations + and * are associated with addition and multiplication op-
erations on natural numbers, and numerical constants can be written naturally in
base 10. A recursive notation is associated to lists so that they can be expressed
in the syntax of OCAML. Thus, the example in this subsection becomes:

mconcat list_Monoid [1] [2; 3]

Inthe rest of this document, we will use classic CoQ notations, such as = forequal-
ity, * for products, etc.

Coercions Classically, statically typed functional programming forbids implicit
casts between types by default. Then, a boolean value cannot be used in a po-
sition where the typechecker expects an integer. However, the proof assistant
gives the user the option of declaring a function as a coercion, i.e., an implicit
cast. In this case, a function nat_of_bool of type bool = nat that would as-
sociate true with 1 and false with 0 can be declared as a coercion using the
following command:

Coercion nat_of_bool : bool >> nat.

Thus, any typing problem b : nat where b is a value in bool becomes a unifi-
cation problem ?f b : nat where ?f is a coercion. CoQ then attempts to build
this coercion, possibly by transitivity. This powerful mechanism provides addi-
tional flexibility in the syntax but increases the risk of having a term validated by
the typechecker in a case where the user would expect a typing error, with the
typechecker inserting a meaningless coercion. For example, we can define a co-
ercion that encodes a natural number with a pair of integers defining its quotient
and remainder in a Euclidean division by a given constant. In such a case, if the
user mistakenly enters a boolean in a context where a pair of integers is expected,
CoQ may compose the coercions and validate the term, possibly causing errors
that are difficult to trace later on, whereas a typing error would directly show the
problem.

Typical ambiguity Most examples of CoqQ terms in this thesis do not specify uni-
verse levels. Indeed, CoqQ has a feature called typical ambiguity that allows infer-
ring them automatically. The associated universe constraints are then checked
before concluding that the term is well typed. In many cases, this inference is suf-
ficient and gives the user the illusion that the entire hierarchy of predicative uni-
verses is a single universe, which is more natural and makes it easier to learn Coq,
although theoretically incorrect. On the other hand, in the context of universe
polymorphism, this inference is imperfect and sometimes has to be disabled and
annotations made by hand. Typically, when development includes circular rea-
soning in which a term contains itself, it may be necessary to enable universe
polymorphism. In order to be sure that we define terms at the right universe lev-
els, we can impose a strict universe instance and reduce the scope of universe
inference. In this thesis, the implementation of the TRAKT prototype uses typical
ambiguity, but the implementation of the TRocQ prototype specifies many uni-
verses manually.
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3.1.2 Inference and ad hoc polymorphism

The various inference features presented here take their information from the
context of the unification problem, but it is also possible to retrieve them from
a meta-level database fed by the user. In particular, this allows implementing ad
hoc polymorphism in some programming languages, i. e., the definition of values,
not by quantifying universally over a type as it is the case for general polymor-
phism presented earlier, but for a finite subset of types. In this way, a generic
operation can be used on any inhabitant of a type contained in this subset, and
the membership witness is inferred by the type system.

Typeclasses The most common way of implementing ad hoc polymorphism is
to use typeclasses. These are structures whose instances can be registered as
canonical inhabitants of their type. Similarly to HASKELL [32] or ScALA [33], CoQ
has this feature [34]. It can be enabled by using the Class keyword at the head
of the structure definition. If the monoid is defined as a typeclass, then instances
can be registered by declaring them with the Instance keyword. One can then
define notations that introduce inference problems that will be resolved automat-
ically using the database of instances of the typeclass:

Notation "x < y" := (@mconcat _ _ x y).

Here, the first hole is the type declared as a monoid, and the second one is the
instance of type Monoid _.

It is also possible to declare type-level functions producing canonical typeclass
instances from other instances. For example, if two types A and B are monoids,
then the product type A x B is also one. The head of the definition in CoqQ is the
following:

Instance product_Monoid {A B : Type}
*{M, : Monoid A} ‘{M; : Monoid B} : Monoid (A * B).

This inference method makes it possible to make reliable use of genuine gener-
icity in the syntax. For example, thanks to this notation and the declaration of
list_Monoid as the canonical function for making instances of monoids on lists,
the example from the previous subsection is written in the following way, which
is exactly the same syntax as the mathematical notation:

[1] < [2; 3]

Some difficulties remain, such as the analogous problem of diamond inheritance
in object-oriented programming, where an instance can be inferred by several
paths, or the inference of complex termsin the context of dependent types, where
an instance can be indexed by something else than a type.

Canonical structures Mathematical structures are defined as a type called car-
rier type, provided with particular data — values and/or operations — linked to
this type, as well as laws governing these data. One way of encoding these struc-
turesinaprogramming language is to use a record type containing the operations
and laws, and to use the carrier type as a parameter of this record to make it poly-
morphic, as it is the case in the definition of Monoid in the previous chapter. To
increase automation, we can then turn this record type into a typeclass.

Another solution is to put the carrier type directly in the structure, as the first field.
Asrecords are dependent, the definition of the other fields is notimpacted. Thisis
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the solution chosen by the MATHCowmP library [35], as shown by the eqType struc-
ture representing types equipped with a decidable equality. Here is a declaration
similar to the one made in the library:*

Record eqType : Type := {
carrier : Type;
eq_op : carrier —> carrier —> bool;
eq_op_equality : forall (x y : carrier), x = y <> eqg_op x y = true

}

In this case, we can define the first projection as a coercion, thus making it pos-
sible to write proofs looking like they quantify over an instance of the structure,
but in reality quantify over its carrier type. In order to recover the features of
typeclasses, CoQ proposes a way of declaring canonical structures? [37] to auto-
matically solve the following unification problem, with T a concrete type and ?E
a unification variable that CoQ must fill with the correct structure:

T = carrier ?E

Generic notations can then be defined, such as = for eq_op, which can be used
for any instance of eqType. For example, in the following lemma, values T, and
T, appearing in the type of u and v hide implicit coercions towards their carrier
type, and we use the generic notation for eq_op on these values:?

Lenma pair_eql : forall (T, T, : eqType) (uv : T, * T,),
u=v —>u.l=v.l.

Here, u.1 = v.1 isactually eg_op T; u.l v.1,thecanonicalstructureinference
function having filled in the term automatically.

3.2 Tactics and automation

Theinference presented in the previous section makes the language of CoQ more
flexible and therefore easier for the user to write. What makes CoQ a true proof as-
sistant, however, is the exploitation of inference in a proof mode displaying to the
user the current state of the proof until it is completed, making it easier to iden-
tify the next action to perform. These actions are represented by specific proof
mode commands called tactics. In this way, the proof makes progress step by
step without the user having to write the proof terms by hand, and the final proof
comesin the form of a scriptin this tactic language called LTAc [38], which is more
readable and closer to a paper proof. Some tactics do more than just performing
a proof step, and build entire proofs of statements contained in a specific theory
that they know how to process, thus offering true proof automation. This section
presents the proof mode and these advanced tactics.

3.2.1 The proof mode

When making a definition, after writing the head of the definition containing the
name and type of the term to be declared, we can give this term in raw form as
we did earlier in the examples, or enter the proof mode with the Proof keyword.
The type of the term we declare then becomes a type to be inhabited, called goal.
The proof is performed by executing a series of tactics, each of which generates a
proof term. Each proof term is given to CoQ and advances the proof more or less
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according to its type. If its type is not convertible to the goal, then the tactic fails
and the user must change strategy or cancel the proof. If its type is convertible to
the goal, then we inspect it to see if it contains any unification variables. If there
are no unification variables, the proof is complete. Otherwise, each unification
variable is a hole that still needs to be filled in order to complete the proof: CoQ
then creates one subgoal per unification variable and asks the user to prove all
the subgoals. The primitive tactic that exactly reflects this behaviour is refine,
but this presentation of the proof mode focuses on tactics that are closer to logi-
cal reasoning.

Let us illustrate the proof mode by analysing the proof of the following lemma in
Coq:

Theorem length_append {A : Type} : forall (1; 1, : list A),
length (append 1; 1,) = length 1; + length 1,.

First of all, here is a definition of the concatenation function over lists:

Fixpoint append {A : Type} (1; 1, : list A) : list A :=
match 1; with
| nil = 1,
| cons a 1 = cons a (append 1 1,)
end.

The initial state of the proof is the following one, represented by hypotheses at
the top and the goal to prove at the bottom:

A : Type
forall (1; 1, : list A), length (append 1; 1,) = length 1, + length 1,

Initially, we can use the intros* tactic to come under the quantifiers and intro-
duce into the context two lists 1; and 1,.

A : Type
1, 1, : list A
length (append 1, 1,) = length 1; + length 1,

Indeed, to prove that a property is valid on any pair of lists, we can name these
values and prove the specialised property on these values, i. e., by instantiating
the quantifiers.

Then, as we have to prove a property on any list, we can make a case analysis on
1, withthe destruct? tactic. Coq therefore divides the proof into two sub-cases,
one in which the list has been replaced with an empty list, and the other in which
the list has been replaced with alist a :: 1.

A : Type
1, : list A
(G1)
length (append nil 1,) = length nil + length 1,

A : Type

a: A

1: list A

(G2)

length (append (a :: 1) 1,) = length (a :: 1) + length 1,

In the first subgoal G1, since in the case of an empty list, the length is zero ac-
cording to the definition of length, addition is equal to the second value and
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concatenation is the second list according to the definition of append, the goal
is convertible to length 1, = length 1,. Therefore, it is sufficient to apply the
reflexivity tactic, that ends the proof by telling Coq it is a trivial equality. This
tactic call is equivalent to applying the refl constructor of equality with the
exact ® tactic. This tactic allows applying a proof term expressed in the language
of CoQ. Thanks to the apply ” tactic, it is also possible to tell Coq that it is suffi-
cientto apply refl toan argument, and let the inference take care of finding this
argument. This makes the final proof script more readable. The eapply variant®
adds flexibility by allowing CoQ to add unification variables in the event that the
inference does not find the right argument, but it is not necessary here.

To prove the subgoal G2, which then becomes the only remaining goal, we can
perform a reduction step with the sinpl? tactic to see that the presence of a cor-
responds to an incrementation of the lengths on both sides of the equality.

A : Type
a: A
1, 1, : list A

S (length (append 1 1,)) = S (length 1 + length 1,)

We can then see that the goal is impossible to prove as it stands. Except for the
addition of a : A to the context and S on both sides of the equality — that can
be deleted with the f_equal tactic —, the proof is in the same state as the initial
one. This loop is symptomatic of the use of a too weak reasoning. A case analysis
is not always sufficient to prove a property on any value of a type. Here, we need
to reason by induction on the list instead of a simple case analysis. The first case
G1does not change, as it is the base case of the induction, but the second one G2
becomes an inductive case, with an induction hypothesis in its context. We can
then use the induction!? tactic instead of destruct.

A : Type
a: A
1, 1, : list A

IHU : length (append 1 1,) = length 1 + length 1,
length (append 1 1,) = length 1 + length 1,

Thanks to the induction hypothesis, we have exactly the element we need to con-
clude the proof. The final proof script is the following:

Theorem length_append {A : Type} : forall (1; 1, : list A),
length (append 1, 1,) = length 1, + length 1,.
Proof.
intros 1; 1,.
induction 1; as [Ta 1 IH1].
- reflexivity.
- simpl. f_equal. exact IH1.
Qed.

The subgoals created by the induction tactic are presentedin the form of a bullet
point list, for greater readability but also to signal to CoqQ that we are first focusing
on the first one, then the second one. The callsto simpl can be left in the script if
the reduction step contributes to a proof that is easier to understand for a human
who would execute it step by step, but these calls are not strictly necessary since
the typing of CoqQ includes conversion. The initial step introducing elements into
the context can also be done before the proof, in the head of the definition:
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Theorem length_append {A : Type} (1; 1, : list A) :
length (append 1; 1,) = length 1; + length 1,.

Finally, the proof is concluded with (ed, a line which when executed sends the
global proof term to the kernel for a second check before registering the term in
CoQ. Thereisasubtletyin the closure of the proof mode: the Qed keyword makes
the proof opaque. This means that after the declaration, the type of the proven
statement is considered to be inhabited, and the witness is the declared term, but
its definition, i. e., the proof term, is in fact inaccessible, as if it was forgotten by
the proof assistant. This can be useful to distinguish computational proofs from
purely logical proofs, where one does not want to introduce lengthy terms in the
goal because of an ambitious reduction step. If we wish to expose the proof term,
we can make it transparent by closing the proof mode with the Defined keyword
instead.

In most cases, declarations with a computational purpose are done by program-
ming the term, because this is a more natural way to go, and proofs are made in
the proof mode for the same reason. However, the boundary between both is
not clear-cut. With dependent types, a proof can depend on data and data can
depend on a proof. The best way to make the declaration is therefore not always
obvious. For maximum control over the generated proof term, it may be inter-
esting or even necessary!! to manually supply the proof terms, at least partially
using the exact tacticin proof mode to supply raw subterms and select the parts
we want to delegate to CoQ’s inference.

3.2.2 Automated proof tactics

The proof mode provides the user with a level of abstraction over CoQ’s A-calculus
in the creation of proofs, but it can also be used to automate them. Indeed, the
tactics receive the current state of the proof and return a term justifying the tran-
sition to a new proof state, which is the final state if the term is sufficient to com-
plete the proof. The tactics presented earlier are used to perform atomic proof
steps, but nothing prevents the development of more advanced tactics, able to
reduce proofs to a single line in the proof script.

Some tactics perform proof search by selecting lemmas in the context or in ded-
icated databases. This is the case for the auto tactic in the standard library, but
also for much more complex tools such as hammers, inspired by the SLEDGEHAM-
MER [39] plugin for the ISABELLE/HOL [8] proof assistant. Hammers first filter the
global context to select the most relevant reachable lemmas for the proof to per-
form. Then, they send this context and the goal to be proved to automated theo-
rem provers, and determine the minimal sub-context needed to make the proof.
This minimal context is then given to a reconstruction procedure that performs
the proof once again, this time within the proof assistant. The representative of
this family of tools in the CoQ ecosystem is the COQHAMMER [40] project.

Other tactics are implementations of decision procedures, algorithms able to au-
tomatically prove statements in a given theory. For example, the lia [17] tactic
in the standard library is the implementation of a decision procedure for integer
linear arithmetic. It allows proving any statement belonging to this theory in a
single tactic call. Another example is the SMTCoqQ [41] project, connecting CoQ
to SMT solvers. The goal to prove is first encoded into the SMT-LIB language [42],
a standard input format for this family of solvers, then the problem is given to an
SMT solver instrumented to provide a trace of its execution giving hints as to how
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to prove the goal. This traceis then fed to a reconstruction procedure in CoQ, that
makes the proof term for the original goal.

An example of a proof where an automation tactic can be used is the proof of an
instance of the Monoid record for nat:

Definition nat_Monoid : Monoid nat.

The econstructor tacticallows the record constructorto be applied without nam-
ing it, by creating unification variables for all the fields. The inference then ex-
pects more information from the user to fill in these variables. Here, we want to
fillin the fields manually one by one, so we turn these unification variables into
subgoals using the unshelve 2 tactic. Initially, these goals mention the unifica-
tion variables:

’mzero : nat

: (G1) (G2)

’mzero : na ?mconcat : nat - nat — nat

’mzero : nat
?mconcat : nat = nat > nat
forall (a b ¢ : nat),
?mconcat a (?mconcat b ¢) = ?mconcat (?mconcat a b) ¢

()

’mzero : nat
mconcat : nat - nat — nat

(D)
forall (m : nat), ?mconcat ?mzero m = m
?mzero : nat
?mconcat : nat — nat - nat
(Gs)
forall (m : nat), ?mconcat m ?mzero = m

By focusing in turn on each subgoal in the order of the fields in the record, at each
stage we prove a subgoal without unification variables. We choose to declare a
monoid based on addition as the accumulator and zero as the neutral value. We
therefore give these two values with the exact 3 tactic. The last three subgoals
then become the following:

(<)

forall (abc : nat), a+ (b+c)=(a+h)+c

(Ga) (Gs)

forall (m : nat), 6 +m=m forall (m : nat), m+ 0 =m

The subgoal G3 can be proved by hand by induction on the integers, but if we
notice that it falls into the theory of linear arithmetic, we can delegate the en-
tire proof to the lia tactic. Finally, the last two subgoals are classical properties
on natural integers, proved in lemmas of the standard library. In these cases, an
automation tool such as lia is not necessary, but can simplify the proof script.
Indeed, we can specify which goals we want to apply a tactic to, by prefixing the
call with the numbers of the targeted goals, the prefix all applying the tactic to
all the remaining goals. From the third subgoal onwards, the proof can be closed
with aline by calling 1ia onallthe remainingfields. The final proof script is there-
fore the following:

Definition nat_Monoid : Monoid nat.
Proof.
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unshelve econstructor.
exact 0. exact add.
all: lia.

Defined.

Note that the proof is concluded with Defined because we want to be able to
extract mzero and mconcat from this term for computational purposes.

3.3 Rewriting and proof transfer

Another category of manipulations frequently carried out in mathematical proofs
is rewriting, i. e., substitution of values, mathematical structures, etc., identified
as similar. In the context of formal proofs, one must give this concept of similar-
ity a formal definition, in order to justify the transition from the initial state to the
substituted state in the kernel of the proof assistant. Equality is an example of re-
lation that can be used to represent this notion of similarity. For example, when
solving a system of equations, isolating a variable in one of the equations allows
it to be expressed as a function of all the others and replaced with this new ex-
pression in all the other equations, thereby reducing the size of the problem.

In mathematical practice, equivalence relations that are more general than equal-
ity can be used to represent similarity between objects. This reasoning up to
equivalence allows greater freedom in the proofs regarding the representation
of mathematical objects. For instance, depending on the context and the proof
to be carried out, it may be interesting to see a natural number through the prism
of a unary encoding or a binary encoding, but the results obtained on unary in-
tegers can naturally be exploited in proofs on binary integers, and vice versa, as
these two encodings are equivalent. In a CoQ proof, the situation is not as simple,
because the equivalence relations have to be formalised and the type system is
less flexible. Indeed, in the context of dependent types, replacing one type with
another is not trivial and can make a term ill typed. Making a proof performed
with one encoding of a mathematical object available in the context of another
encoding of this objectis called proof transfer, and it is a non-trivial task although
transparent on a paper proof. This section explains how rewriting works and dis-
cusses its extension to proof transfer in CoQ.

3.3.1 Rewriting

The equality of Coq, represented by the inductive type eq, is based on the princi-
ple of identity of indiscernibles, attributed to LEIBNIZ, according to which equal-
ity between two terms corresponds to the fact that these elements behave in the
same way in all contexts. Formally, this property translates into the induction
principle of equality: if a property is true for x and x = y, thenthe same property
is true for y. Here is the type of the induction principle eq_rect in the standard
library of Coq:**

eq_rect : forall (A : Type) (x : A) (P : A = Type),
Px—> forall (y : A), x=y > Py

This term can then be used to perform rewriting in a goal. Suppose that we wish
to perform a rewrite between two values y and x oftype A from an equality e of
type x = y. To do this, it suffices to abstract the occurrences of y in the goal, to
obtain a predicate of type A — Type that will be precisely the P argument of the
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induction principle of equality. The term eq_rect A x P ?p, y e is thus a proof
of the goal, with a unification variable ?p, correspondingto anew goal P x,i.e.,
the same goal in which the selected occurrences of y have been replaced with
X.

Thetacticallowing rewriting using aninstance of eq_rect asthe underlying proof
termis rewrite. It takes as parameters the direction of the rewrite — x to y or y
to x —, the equality proof justifying it, as well as possible hints as to which occur-
rences we wish to rewrite and which we wish to leave untouched,® or the term
we want to rewrite — by default, the goal. The tactic equivalent of the rewriting
proof term is therefore rewrite — e or rewrite e.

3.3.2 Extension to equivalence

Thanks to rewriting as presented above, we can exploit equalities in proofs. How-
ever, there are other situations in which a rewrite would be performed in a pa-
per proof, not exploiting an equality but another equivalence relation instead.
Indeed, CoqQ defines tactics reflexivity, symmetry, and transitivity, allow-
ing respectively to apply refl, to flip an equality, and to cut a proof of equal-
ity in two, by going through an equality with a third term. Yet, the properties of
reflexivity, symmetry, and transitivity are common to all equivalence relations.
Consequently, CoqQ is equipped with a generalised rewriting [43] feature that ex-
tends these tactics as well as the rewrite tactic to setoids [44], i. e., types with an
equivalence relation. For example, consider the propositional equivalence <>,
i.e., a two-way implication between two propositions in Prop. This relation is
an equivalence in Prop, so it is possible to declare Prop as a setoid with this
relation. Thanks to generalised rewriting, we can then prove A <= C with the
transitivity tacticand proofsof A <> B and B <= C, forawell-chosen propo-
sition B.

Although extended to setoids, rewriting remains limited to equivalence relations,
thus homogeneous relations. Rewriting in types is therefore a fragile action, be-
cause it can modify types in a statement but not the values that inhabit these
types. Indeed, we can relate the unary and binary encodings of the natural num-
bers nat and bin_nat, declaredin §2.2.2, with an equivalence relation over types,
but the relation cannot extend to values in these types that might be presentin a
goal. For example, consider the following goal:

forall (n : nat), 8 < n

Here, we cannot rewrite nat into bin_nat withoutimpacting the rest of the goal,
because the occurrences of n change type in the process. In this case, we need a
way to relate the order relation < to an equivalent over bin_nat, and constants
0 and b0 together, in order to transfer the whole goal from nat to bin_nat. This
global operationis called prooftransfer and can be used to transfer existing proofs
or reformulate goals, along equivalence proofs.

The COQEAL [45] project allows working with heterogeneous relations, that can
be used to relate several representations of the same mathematical object, in par-
ticular a representation adapted to the proof of properties on the object and a
more powerful representation for expressing programmes using the object. This
is known as refinement. This plugin works on heterogeneous functional relations,
but performs transfer only on closed terms without quantifiers. The rest of this
thesis explores different options for proof transfer, first with the aim of prepro-
cessing goals before running a proof automation tactic (§ I1), then with the aim of
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Meta-programming in CoQ
with CoQ-ELPI

The proof mode allows automating proofs by letting the user execute tactics to
generate proof terms for them. Proof scripts are then written in the LTAc tactic
language, that can be used to chain tactics calls and structure the proof. Tac-
tics are written in a meta-language, the exact choice not being important for CoQ
since tactics can be seen as functions from one proof state to another. The only
constraint on the tactic is that it must be able to provide a proof term that can be
verified by the kernel afterwards.

Several meta-languages are available in CoQ, each one with particular strengths:
LTAc, OCAML, METACOQ, LTAC 2, COQ-ELPI, etc. The LTAC language has functions
to inspect the current proof state and create CoQterms, which makes it a meta-
language that can be used to write tactics. The most primitive meta-language is
OCaML, since it is the language used to implement Coq itself. Interactions with
CoQ are then made with the internal API of the proof mode and CoqQ terms are
manipulated in their internal representation, which gives maximum freedom but
exposes all the complexity to the meta-program. The METACOQ project [46] allows
manipulating CoQ terms directly in CoQ. It is therefore useful when one wishes
to certify the meta-program, for example by proving its completeness. The aim
of the LTAc 2 language [47] is to be a meta-language syntactically close to LTAC,
while adding features expected in a modern language, such as a type system or
a way to declare data structures. All the developments carried out during this
thesis were done in the CoQ-ELPI meta-language [16], presented in this chapter.
We focus first on its features and then on the accompanying tools to interact with
CoQ.

4.1 Alogic meta-programming language for Coq

In reality, the CoQ-ELPI plugin is an extension of a language called ELPI [48] to
make it a complete meta-language for CoQ. This section presents this language
and the features that make it interesting in the context of meta-programming for
CoQ. We also explain how CoQ terms are represented in Elpi.

4.1.1 Alogic programming legacy

The ELPI language belongs to a family of languages known as logic programming
languages. This programming paradigm was developed in the second half of the
20t century with the advent of its most famous representative, PROLOG [4]. The
base object of such a language is the predicate, and programs have a logical in-
terpretation in a subset of first-order logic.

Howalogical programworks Ratherthan aseries of instructions to be executed,
a logical program is represented by a knowledge base and a query. The knowl-
edge base is a list of declarations of facts — predicates that are unconditionally
true — and rules — predicates that are true if a set of premises is true. Each dec-
laration of a predicate is called an instance of that predicate, and can have ar-
guments that are either atoms — base constant values of the language, such as
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numbers or strings — or variables, i. e., named locations that do not yet contain
a concrete value.

The query is a list of predicate instances that we want to make true. An inference
engine then explores the knowledge base to check whether a solution exists. For
each predicate to be made true, the instances of this predicate in the knowledge
base are browsed. For each instance, an attemptis made to syntactically unify the
head of the instance — the fact or the conclusion of the rule — with the predicate
instance to satisfy in the query. If unification succeeds, we replace this predicate
in the query with the body of the instance — the conditions for the rule to be true
—, which must also succeed for the query to have a solution. If unification fails,
we move on to the nextinstance. If allthe options are exhausted, then the request
cannot be satisfied.

Logical languages are therefore said to be declarative, as they describe the prob-
lem and the characterisation of a solution rather than the procedure to compute
this solution. More precisely, ELPI is an implementation of APROLOG [49], an ex-
tension of PRoLOG adding A-terms — predicates behave like functions —, quanti-
fiers, and an implication operator.

Let us illustrate how ELPI works with a simply-typed encoding of A-calculus, pre-
sented in §2.1.2.

kind lterm type.
type abs (lterm — lterm) — lterm.
type app lterm —= Tlterm — lterm.

The code above declares a new type lterm representing the A-terms, with two
constructors, abs for the abstraction and app for the application. This is a HOAS
encoding — Higher Order Abstract Syntax [50] —, i. e., variables and functions in
the object language are represented with ELPI variables and functions.

We can define an ELPI type to represent the simple types of this A-calculus:

kind ltype type.
type arrow ltype —> ltype - ltype.

Similarly, the case of the type variable is represented by an ELPI variable. From
these declarations, we can implement a typing predicate, taking a term from the
calculus and returning a simple type.

pred type-of i:lterm, o:ltype.
type-of (app T, T,) B :-
type-of T, (arrow A B),
type-of T, A.
type-of (abs F) (arrow A B) :-
pi a\ type-of a A = type-of (F a) B.

Thefirst line declares the type of the predicate, precising whether each argument
is an input or an output. Each instance reflects a typing rule of the calculus, with
the head of the instance representing the conclusion of the rule, and the body
of the instance representing its premises. Note that the case of abstraction uses
operators pi and =, representing universal quantification and implication re-
spectively. As the abstraction is represented by a meta-function, in order to in-
spect the body of this function, we need to provide it with an argument. The pi
operator then locally introduces a variable a, called a universal constant. The
term F a isthen the body of the abstraction in which the bound variable is a. We
check that this term has a type B, but this is only possible if we give a type to the

[49]: MILLER et al. (1987), A logic program-

ming approach to manipulating formulas
and programs

[50]: PFENNING et al. (1988), “Higher-Order
Abstract Syntax”
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newly introduced variable a. The role of the implication is context extension and
corresponds exactly to this situation: we add the hypothesis that a is of type A
into the execution context of the predicate on the right hand side of the arrow.
Thus, in the execution of type-of (F a) B, when we search for the type of a, the
assumption we have provided will be an additionalinstance of the type-of pred-
icate allowing us to give a type to this variable. The VAR_, rule that involves the
context is then implicit since it exploits the ELPI context.

Constraint handling rules A crucial feature of ELPI is the Constraint Handling
Rules (CHR) language [51]. This feature allows making the control flow of ELPI
programs more complex, by allowing requests to be frozen on a variable, i. e., sus-
pended until this variable takes a concrete value. A request R is frozen on a list
of variables L by calling the following predicate:

declare_constraint R L

In addition to freezing queries, it is possible to declare rules to detect the simul-
taneous presence of a set of frozen queries and execute ELPI code. For example,
consider a binary predicate p; and a unary predicate p,. We can declare a com-
mon constraint handling rule for these two predicates as follows:

constraint p; p, {
rule (p; X Y) \ (p, 1) | Cond <= Code.
}

The rule is triggered as soon as there is simultaneously in the set of frozen predi-
cates an instance of p; applied to two arbitrary values and an instance of p, ap-
plied to the constant 1. When the rule is triggered, condition Cond is tested to
see if the code of the rule — variable Code — must be executed. If the condition is
true, the code is executed; otherwise, the other rules are inspected. Character \
is used to delete frozen requests once the rule has been executed: all predicates
at the left of this character are kept, all those at the right are deleted. Itis possible
to write a rule that does not delete any identified predicates, or one that deletes
them all.

4.1.2 Encoding of Coq terms

The CoQ-ELPI plugin connects ELPI to CoQ by defining internal predicates written
in OCaAML giving ELPI developers access to the proof assistant’s API, in order to
interact with CoQ directly from the meta-language. When the body of a predicate
is written in OCAML, it is necessary to define a way to connect OCAML values and
ELPivalues. Each manipulated data structure must then have a representation in
both languages, in particular the CoqQterms.

The A-calculus of CoQis encoded by an ELPI type term, whose constructors used
in this thesis are as follows:

type sort sort = term.

type fun name — term — (term — term) — term.
type prod name — term —> (term — term) —> term.
type app list term — term.

type global gref —> term.

type pglobal gref —> univ-instance — term.

[51]: FRUHWIRTH (1994), “Constraint Han-
dling Rules”
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Let us present these constructors in order.

First of all, sorts are encoded by a constructor sort. We distinguish the case prop
that encodes the impredicative universe P from the case typ I thatencodesthe
predicative universe [J; by associating ¢ with I using another ELPI type repre-
senting universes.

Next, the encodings of the I and A binders are the prod and fun constructors re-
spectively. This is also a HOAS encoding, where binders use meta-functions. As

a result, there are no cases for bound variables or unification variables. Bound

variables are represented with universal constants as in the previous example of

simply-typed A-calculus, and unification variables are represented by ELPI vari-
ables.! These two cases are notoriously difficult to deal with in the more tra-
ditional encodings of CoqQ terms, as these terms are tricky to handle. Indeed,
these variables only make sense in a given context. To avoid having to take the

names of bound variables into account in the reasoning, one prefers encodings

that make a-equivalent terms syntactically equal. Thus, the common encodings

of A-calculus represent bound variables with DE BRUIJN indices [52], i.e., a con-
structor var,, where n isanatural numberrepresenting the distance to the binder
whose variable this constructor points to. In this context, binders are just rep-
resented with the type of the bound variable and the bound term. For exam-
ple, if we denote lam the constructor that encodes A and A the encoding of a

type A, the identity Az : A.z is encoded as lam A vary, and the encoding of

Az : A dy : A.zis lam A (lam A var,). The HOAS encoding chosen by CoQ-
ELPI is another way to represent terms up to a-equivalence.? Indeed, the use of

a meta-function sets the position of the binder to which the variable refers, and

even has the advantage over D BRulJN indices that it isimpossible for a variable

to escape its scope, whereas without further involvement of the type system of

the meta-language, a DE BRUIIN index can be higher than the number of binders

present in the term. Moreover, term abstraction or reduction requires rigour in

index shifting, whereas these operations are trivial in ELPI.

Concerning the remaining constructors, we note that application is n-ary to re-
flect the OCAML type of CoQ terms, and constants are represented with two dif-
ferent constructors depending on whether they are universe-polymorphic. The
names of constants are encoded in a gref 3 type that distinguishes between in-
ductive type constructors — indt —, inductive value constructors — indc —and
the rest of the definitions — const. Other term constructors are available, such
as match or fix, but are not discussed in this thesis.

Here is an example of CoQ term and its encoding in ELp1:*
fun (X : Type@{u}) (f : Type@{u} - A) = f X

fun *X* (sort (typ «u»)) x\
fun *f (prod *_° (sort (typ «u»)) _\ global (indt «A»)) f\
app [f, x]

A CoQ-ELPI tool receives and sends CoQ terms — command arguments, goals to
prove, proof terms, etc. — in this format.

4.2 Atoolbox

In addition to the features offered by the ELPI language and the high-level en-
coding of CoqQ terms, the CoQ-ELPI plugin provides numerous entry points to the

1: Aterm with holes in Coq is therefore also
a term with holes in ELPI.

[52]: DE BRUIJN (1972), “Lambda calculus no-
tation with nameless dummies, a tool for au-
tomatic formula manipulation, with applica-
tion to the Church-Rosser theorem”

2: The first parameters of type name in the
binders are just present for display reasons,
but are not taken into account in ELPI’s unifi-
cation.

3: For global reference.

4: We assume here that A is a universe-
monomorphic inductive type and u is a
named universe.
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CoQ API, for example to search for the definition of a term in the CoQ context
in which the meta-program runs, call the typechecker, or create new definitions.
Databases can also be created to store terms at the meta level, as well as com-
mands and tactics to interact with the proof assistant, making ELPI a complete
meta-programming tool.

In this section, we shall take the simple example of a term display feature, i. e., the
association of each type with a function making a string from a value of this type.
To do this, the HASKELL language uses a Show typeclass and includes an instance
derivation feature for new data types with the deriving keyword:

class Show a where
show :: a = String

data Maybe a = Just a | Nothing
deriving Show

This feature can be obtained in CoQ using a database storing the display functions
specific to each constant and a command generating new functions from existing
functions and a type declaration.

4.2.1 Databases

In CoQ-ELPI, a database is a bank of predicate instances. A predicate can indeed
be used as a way to group data or associate them together. In our case, we want to
associate constants with CoQ functions to display them. We can use a predicate
show taking as arguments two constants, one for the type to be displayed, the
other for the display function.

Database creation The creation of a CoQ-ELPI database is done with the Elpi
Db command, that is given the name of the database as well as a block of code
declaring the various predicates representing the data that will be stored in it
later. For example, here is the declaration of a database intended to contain in-
stances of display functions:

Elpi Db show.db 1p:{{
pred show o:gref, o:constant.

33

Here, show.db is the name of the database. Note that the first argument can be
any constant — inductive type, constructor, definition — while the second is nec-
essarily a definition, since this is a function whose codomain is string.

Adding information to a database An instance of the show predicate is added
to the database using a predicate internal to CoQ-ELPI, coq.elpi.accumulate. It
takes various arguments allowing the specification of the database in which to
store the instance, at what location in this database more precisely, etc., as well
as the predicate instance. For example, if the user declares a term show_nat asa
display function for type nat, it can be added to the database show.db with the
following query in COQ-ELPI :

global Nat = {{ nat }},
global (const ShowNat) = {{ show_nat }},
coq.elpi.accumulate _ "show.db" (clause _ _ (show Nat ShowNat))

38
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The {{-}} syntaxisthe quoting operation enabling CoQ syntax to be used within
a CoQ-ELPI program, the term then being translated into its ELPI representation.
The syntax of the opposite operation, unquoting, allowing a term expressed in
the meta-language to be written in the middle of a term expressed in CoQ and to
be evaluated to obtain a term entirely expressed in CoQ, is 1p:{{-}3}. Naturally,
in a complete plugin for CoQ, the user does not have to write this ELPI code man-
ually to populate a database. Instead, they can use a CoQ command provided by
the plugin developer. This also has the advantage of adding an indirection level
between user input and the actual database modification code, for example to
check that the terms supplied by the user as arguments to the command are well
typed and correspond to the format of the data we wish to store.

Database queries Once the user has filled the knowledge base with the desired
information, any CoQ-ELPI code connected to the base can exploit it by making
queries. As the data are represented with predicate instances, performing a query
amounts to calling one of the predicates defined in the database. If the instance
we are looking for exists, then the predicate will succeed, otherwise it will fail.

4.2.2 Creation of commands and tactics

The main interest of a meta-language for Coq is to enable the development of
tools to interact more efficiently with Coq, i.e., commands and tactics. Com-
mands allow registering data, to retrieve and display information, and to auto-
mate declarations. Tactics allow performing proofs more quickly than letting the
user do it alone, by executing algorithms implemented in the meta-language to
automate the proof steps. In the example given earlier, we want to have a com-
mand to register display functions and a command to generate new ones.

Commands Acommand allowing the user to declare display functions could be
the following one:

Show Declare nat show_nat.

The main role of this command is to replace the manual call to the internal pred-
icate cog.elpi.accumulate. Itis declared as follows:

Elpi Command Show.
Elpi Accumulate Db show.db.
Elpi Accumulate 1p:{{
main [str "Show", str "Declare", trm T, trm F] :- % ...

33

After connecting the command to the database, we give the main predicate of
the command, with the arguments it expects and the code to execute when it is
called. Here, variable T will contain the term corresponding to the type for which
we want to add a display function. This function is then represented by variable
F. This main predicate calls cog.elpi.accumulate, but it can check beforehand
that T and F are well typed, for example, or even that F has the type of a display
function for T. This ensures that the database contains well-formed data at all
times.

A command can be declared in a similar way to generate a display function on
an inductive type I from its definition. An internal predicate coq.env.indt is
then called to retrieve the declaration, giving amongst other things the types of

39
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the inductive type constructor and the inductive value constructors. The function
can then be generated by syntactically inspecting these types. Once the display
function has been built, the internal predicate coq.env.add-const can be called
to declare this term as a new constant show_I for example.

Tactics A tactic is created with CoQ-ELPI using the following command, where
t is the name of the tactic:

Elpi Tactic t.

Just like commands, a tactic has a main predicate,® defined by accumulating ELPI
code, after connecting the tactic to the various databases its code uses:

Elpi Accumulate 1p:{{
solve InitialGoal NewGoals :- % ...

33

The solve predicate takes the initial goal and must return a list of goals contain-
ing the associated goal as well as any proof obligations that the tactic leaves be-
hind.

The initial goal is represented with a value of the ELPI type goal, containing the
context of the goal, the type to inhabit in order to prove it, and the various argu-
ments given to the tactic. This goal type also contains variables of type term rep-
resenting the proofs to apply for proving the goal. These are initially undefined
variables, and any unification constraint applied to them results in an action on
the prooftermin CoQ. Touching these terms directly is therefore a tricky business,
but an APl is available in CoQ-ELPI to act on the proof term in a controlled man-
ner. In the context of this thesis, we only use the refine function that essentially
performs the same action as the Coq tactic with the same name, i. e., applying a
proof term with holes, these holes representing the new proof obligations. CoQ
checks that the term is well typed, provided that the user subsequently fills the
holes.

5: In the case of tactics, it is called solve.
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Introduction

The decision procedures used to automate the proofs of statements contained in
a theory are defined in an abstract way, using the mathematical objects present
in the signature of this theory, i. e., the list of symbols belonging to the theory as
well as the various equations governing it. However, in the CoQ proof assistant,
itis possible to model the same mathematical object in different ways, as shown
by the definition of inductive types nat and bin_nat in § 2.2.2. This diversity in
the representation of mathematical objects is available both for the tactics devel-
oper and for the user of the proof assistant.® For example, when implementing a
decision procedure for CoQ, the developer chooses a representation for each of
the symbols of the concerned theory. The automation tactic — the result of this
implementation — is then initially biased towards one of the representations: if
the user chooses the same data structures as the developer of the tactic to rep-
resent the theory, then the decision procedure can run normally and provide the
expected automation; otherwise, the tactic does not recognise the different sym-
bols, which makes it unable to fulfil its role correctly.

In order to increase compatibility of the goals with the decision procedures, one
solution is to add a preprocessing phase between these goals and the associ-
ated tactics. An ideal preprocessed statement would express all the symbols of
a theory’s signature with terms defined using the same data structure, the one
recognised by the automation tactic that we wish to execute after preprocessing.
The various representations that can be found in the statements must therefore
all converge to the target signature. The preprocessed statements are then ex-
pressed in a canonical form maximising the chances of success of the automation
tactic thatis subsequently executed. In order to replace the original goal with the
preprocessed goal, it is necessary to prove that the latter implies the former. In-
deed, if we wish to prove G’ when Coq expects a proof of G, we must apply the
modus ponens rule using a function of type G’ — G, that performs the goal
substitution.

This section presents TRAKT [12], a pragmatic goal preprocessing plugin for CoQ
whose goalis to allow more statements to be proved by existing implementations
of decision procedures. We first present the specification of the desired prepro-
cessing tool and we position the existing tools in relation to this objective (§ 5).
We then give a detailed theoretical presentation of the preprocessing carried out
by TRAKT (§ 6). Finally, we position this tool in relation to an ecosystem of pre-
processing tools in CoQ, and identify the prospects forimprovement (§ 7).

6: For the latter, it is important, as certain
proofs are more easily done with certain rep-
resentations.

7: The implementation is available in the
repository:

https://github.com/ecranceMERCE/trakt

[12]: BLoT et al. (2023), “Compositional pre-
processing for automated reasoning in de-
pendent type theory”
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Goal canonisation:
objectives and current situation

The context of goal preprocessing in Coq is broad, and the nature of the rewrites
to perform depends on the decision procedure we wish to execute after prepro-
cessing, as well as the flexibility of its implementation. We restrict this context
to goal canonisation, i. e., exploitation of equivalences between types and oper-
ations in a rewriting of the goal, so that it uses the same implementation of the
signature of a theory as the one chosen by the developer of the automation tool
we wish to run to prove the goal. However, even within this reduced frame, per-
fect preprocessing does not exist, as each tool deals with a specific sub-problem
and not necessarily in a complete way. The development of preprocessing tools
is therefore incremental, each tool being justified by the identification of limita-
tions in existing tools dealing with the same problem. In this chapter, we define
the preprocessing problem we are interested in for the first part of this thesis
(§5.1), then we study the features of a family of preprocessing tools based on the
zify tactic, as well as their limitations regarding the problem to solve (§ 5.2).

5.1 Content of the desired preprocessing algorithm

An efficient way to define the objective of a goal preprocessing toolis to base it on
the automation tactic that we wish to execute to prove the statements contained
in a given theory, and to identify the differences between the goals frequently en-
countered by the user in this theory and the implementation of the signature of
the theory in the automation tactic. In the case of TRAKT, the general objective is
to have a preprocessing tool for theories in the SMT family, and in particular to
improve the preprocessing phase of the SMTCoQ plugin [41], a tool for connect-
ing CoQ to SMT solvers. However, we want the tool to be compatible with other
automation tactics, such as lia, by making it flexible on the preprocessed the-
ory and not hard-coding a particular signature in the plugin. In this section, we
explain all the objectives of the canonisation expected in this context.

5.1.1 Preprocessing of theories

The first objective of canonisation is to erase variability in the representations
of mathematical objects in CoQ, due to the freedom and expressiveness of the
proof assistant language. This amounts to translating a goal that uses one or
more implementations of the signature of a theory into another goal that uses
one implementation of the signature defined as canonical. This implies knowing
how to deal individually with all the possible elements of a signature and their
occurrences in the goal. The examples consider the automation tactic lia [17]
for linear arithmetic over integers.

Datatypes The canonical implementation selected by lia for the signature of
linear integer arithmetic is based on the Z type of binary integers:

5.1 Content of the desired prepro-
cessing algorithm . ... ... X}
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[41]: Ekicl et al. (2017), “SMTCoq: A Plug-In
for Integrating SMT Solvers into Coq”

[17]: BEssoN (2006), “Fast Reflexive Arith-
metic Tactics the Linear Case and Beyond”
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Inductive Z : Set :=
| 20 : Z
| Zpos : positive = Z
| Zneg : positive = Z.

The chosen representation uses type positive defined in § 2.2.2.1 As this is the
canonical type for integers, a value in Z is recognised as an integer in any exe-
cution of the lia tactic. Conversely, integers expressed in other encodings are
not recognised as such, and may cause the tactic to fail.? For example, the MATH-
Cowmp library provides a type int with a unary encoding that glues two copies of
the space of natural integers together:

Variant int : Set := Posz of nat | Negz of nat.

Although this multiplicity of representations offers greater freedom to the user,
the tactics remain rigid due to the choices required for implementation. The lia
tactic does not — by default — treat the values in int as integers. The desired
preprocessing phase replaces values from various encodings with values in a tar-
get encoding. In the case of arithmetic, for example, we want to replace valuesin
int with valuesin Z to improve lia’s support of the goal. In the case of quanti-
fied statements, we also want the type of bound variables to change accordingly,
at least for quantifications over simple types.

Operations and constants In the desired preprocessing, the replacement of val-
uesinasource type by values in a target type must be carried out at a finer level of
granularity. It must be possible to associate an operation in the source type with
an equivalent operation in the target type. Otherwise, a value a + b in a source
type — for example int — could be translated as a single block, which would
no longer make it an addition in the target type. If the operations are associated
together, then the preprocessing tool can translate first the operation, then its ar-
guments. This treatment also applies to constants in the source type, which can
be considered as zero-arity operations. If the constructors of a source type can
be associated with constants and operations in the target type, then numerical
constants can be translated.

Subtyping Some goals encountered in proofs may contain types that can be
embedded in a larger target type, without being equivalent to them. This is the
case, forexample, of type nat and type Z.Indeed, itcan beinterestingto visualise
natural numbers as a special case of integers in order to facilitate the work of a
proof automation tool like 1ia. We then expect the translated goal to contain a
property that makes the subtyping information explicit, so that this associated
statement remains provable if the original statement is.

To sum up, we consider the following goal:

forall (ab : nat), a+b="h+a

We need to be able to translate this goal into the following goal:®
forall (a b : bin_nat), a+b=>b + a

We can see that the values are treated independently: additions are conserved
in the preprocessed goal and quantifiers are updated with bound variables in the
target type. If the automation tool requires the values to be expressed in a larger
target type, we expect a goal similar to this one, adding conditions to preserve
information about the positivity of a and b:

1: It is in fact bin_nat with an additional
case for non-zero negative integers.

2: Here, we consider a version of lia with-
out preprocessing. In the standard version of
CoQ, this tactic comes with integrated pre-
processing, which TRAKT improves.

3: We use the same notation + for addition
in both types, for readability.
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forall (ab:2),a=0—>b=>0—>a+hb=>h+a

5.1.2 Status of logic

The preprocessing tool we want to build focuses on translating the symbols of
a theory, but when translating a goal, we cannot ignore the processing of logic,
expressed through quantifications, relations, logical connectives, etc. Evenin a
simple goal, the user needs logic to express what they want to prove.

Relations For example, in the last goal presented earlier, the property to prove
is an equality between two arithmetic expressions. The inductive type eq used
to represent equality is a binary relation on a given type. In the associated goal,
equality was changed into equality over the target type. We are therefore looking
to build a preprocessor that also substitutes relations. Note that this must be
extended to relations of arbitrary arity, including predicates, of arity 1.

Representationsoflogic Theexpressiveness of CoQallows logic to be expressed
in a variety of ways, not all of which are necessarily handled by proof automation
tactics. In general, properties can be expressed using inductive typesin Prop or
Type. However, a user or library developer may use relations in other represen-
tations in their goals, that are not recognised by all automation tactics. This is
because decidable relations are generally encoded as booleans, on which it is
easy to perform a case analysis.* The types in the MATHCoOMP library [35] come
with definitions allowing them to be used with boolean logic — for example, an
equality test or an order relation. These boolean encodings are less likely to be
recognised by an automation tactic than their versions in Prop defined in the
CoQ standard library. Preprocessing able to express logic in Prop is therefore of
interest.

Conversely, if an automation tactic involving a lower-level logic system than that
of CoqQ s used, in which every relation is decidable, then the goal it receives must
expose the decidability information of the relations as much as possible. For ex-
ample, the SMTCoQ project, targeting SMT solvers, directly maps the boolean
logic of Coq to the logic of the SMT-LIB language used as the input format for
the solvers. Thus, the optimal input goal for the SMTCoQ automation tactic is
one where all logic is expressed in bhool.

Logical connectives CoQ users can declare new logical connectives, forexample
an exclusive OR, and use them in their goals. If these connectives have a boolean
version, the preprocessing tool must be able to target one version or the other, so
that the entire logical part of the syntax tree representing the goal is expressed in
the desired representation of logic.

To summarise, let us consider the following goal, expressed using boolean logic
and MATHCoMP integers:®

forall (x y z : int), x <S? y &&y <? z — x <? 2

Order relations, implication, and conjunction are expressed in a boolean version.
The desired preprocessing is able to translate this statement by targeting both an-
other representation of integers, such as Z, and an expression of logic in Prop.

forall (x yz : ), x S yAy<z->x < z

4: As the logical system of CoQ is not classi-
cal, it is not always possible, by default, to
perform a case analysis on a value in Prop.
[35]: MAHBOUBI et al. (2021), Mathematical
Components

5: A coercion from bool to Prop defined in
this library for greater readability must also
be taken into account by the preprocessing
tool.
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5.1.3 Polymorphism and dependent types

The expressiveness of CoqQ allows the user to prove very general statements that
are true for a family of types. For example, we can prove statements about a data
structure regardless of its size or the type of elements it contains. The preprocess-
ing features defined previously must then be extended to this larger context, so
that these more abstract statements can also be proven by automation tools.

Polymorphism If we know how to associate a value in a type A with a value in
a type B in the output goal, it may be interesting to lift this association to a data
structure containing values in A, in order to obtain in the associated statement
a similar structure with its values in B. Thus, a list of integers list int can be
associated with a list of integers 1ist Z inthe associated goal, which then allows
a tactic capable of handling list theory and arithmetic in Z to prove the goal.

Without considering the exact type of values contained in a data structure, we
can also perform logical preprocessing, for example by propagating a decidable
equality through the structure to obtain one on the structure itself. The associ-
ations between relations detailed earlier are then parameterised by other rela-
tions.

It can also be useful to associate several data structures together. For example,
turning a list of integers in type list int into a tree of integers in type tree Z
can be done by reorganising the values in the list.

Finally, some forms of ad hoc polymorphism may be present in goals, such as
the generic notations of the MATHCowmP library, which allow the same notation to
be used for several types equipped with the same operation. For example, the
addition of MATHCoMP is noted + for all the types that actually are instances of
a ring mathematical structure, encoded by canonical structures.® This genericity
must not hinder the operation of the preprocessing tool.

Dependent types Besides polymorphism, some data structures are indexed by
values that are not types. For example, we can imagine a type bitvector n that
represents bit vectors of size n, where n is a natural integer in type nat. In this
case, the preprocessing of a goal containing this type is more subtle. If the data
structure does not change during preprocessing, then value n mustremainin the
source type nat, as achange in the type would make the associated goalill typed.
If the structure changes, for example for another structure indexed by an integer
in Z, then the user must be allowed to associate such dependent structures.

5.2 The zify family: features and limits

The zify [53] tactic is a tool for preprocessing arithmetic and logical statements
for CoqQ, designed for the lia tactic. Itis the starting point for the work on TRAKT
and a source of inspiration for certain design choices. It translates some integer
representations (nat, positive, etc.) to type Z, the representation of integers
used by the target tactic. This tactic is certifying and does not leave proof obliga-
tions to the user. In this section, we present the internals of this tool and evaluate
its response to the specification defined in the previous section.

6: Concept presented in §3.1.2.

[53]: BESSON (2017), “ppsimpl: a reflexive Coq
tactic for canonising goals”
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5.2.1 Modular preprocessing of arithmetic

Modularity with respect to a single, fixed signature for a theory can be represented

by a CoqQ record type or a module type. Thus, for arithmetic, we could have a

record defined by a carrier type, the operations of addition, multiplication, etc.

However, to allow the user to only partially preprocess the theory, or to add new

symbols, i. e., new arithmetic operations to be taken into account, the zify tac-

tic offers a degree of extensibility in the form of typeclasses.” In this way, there is 7: Concept presented in §3.1.2.
a typeclass for each category of symbols to preprocess.

All type classes instances are then exploited when traversing the original goal,
each symbol being replaced with its associated symbol, adding a subterm to the
global proof, which is eventually a proof of implication between the new goal ob-
tained and the initial goal.

Type embeddings The first class, InjTyp, is used to declare an embedding be-
tween two CoQ types:

Class InjTyp (S T : Type) := {
p:S—>T;
P : T —> Prop;
m : forall (x : S), P (yp x)
3.

Function ¢ is an injection from the source type S to the target type T. The injec-
tion can be partial thanks to the following two fields: P isa property on thevalues
of the target type, and n is a proof that any injected value respects this property.
This allows representing subtyping, such as the one of nat in Z mentioned ear-
lier. In the case of two equivalent types, such as int and Z, the fields P and n
are filled in a trivial way, for example the following:

P _ = True

nm_:=1

In the case of the partial embedding of nat into Z, the property is positivity:

9 := Z.of_nat
P(n: nat) := Z.of_.natn = 0
n : forall (n : nat), Z.of_nat n = 0

Symbol embedding In order for preprocessing to replace an operation with the
associated canonical operation, classes are used for various arities: Cst0Op, UnOp,
BinOp. Here is the definition of the BinOp class:

Class BinOp
{S1 S, S5 Ty T, Ty : Type}
{InjTyp S; T;3 “{InjTyp S, T,} “{InjTyp Sz T3}
(op : 8 =S, =)
= {
op' : Ty > T, > Tz,
m, : forall (x; : S;) (x; ¢ S;), @ (op x; x,) = op' (9 %) (9 x;)
3.
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One links a binary operation op, defined from three types declared as embed-
dable, to an operation op', defined with the three associated target types, by a
proof of morphism t,.

EXAMPLE 5.2.1
Here is the declaration of an embedding of addition over nat into addition
over Z:

op' := Z.add
m, : forall (n; n, : nat),
Z.of_nat (n; + n,) = Z.of_nat n, + Z.of_nat n,

5.2.2 Preprocessing of logic

The way to handle logic in zify is similar to the arithmetic preprocessing. Just
as there are typeclasses for operations, the plugin defines typeclasses for various
arities of relationships.

Relation embedding The zify tactic is also able to preprocess homogeneous
binary relations thanks to the BinRel class:

Class BinRel {S T : Type} (R : S = S = Prop) “{InjTyp S T} := {
R' : T>T - Prop;
My, ¢ forall (x; x, : S), R x; x, <> R' (9 x;) (9 x,)

}

So, for instance, an order relation over type positive can be embedded into the
order relation over Z:

R' := Z.ge
My, : forall (p, p, : positive), p, = p, <> Zpos p; = Zpos p,

General processing of logic Other features are proposed, such as a saturation
mechanism, so as to recover properties lost during embedding, such as preser-
vation of positivity by multiplication over natural integers, or the possibility to
declare morphisms for equivalence in Prop, to allow various logical connectives
to be handled. The preprocessing of logic in general is possible via the use of
the BinRel and BinQOp classes. Indeed, boolean connectives must be declared
as binary operators of the BinOp class (with S; := bool) and associated either to
themselves, to their version in Prop thanks to a trivial embedding of bool into
Prop, or to operators in an integer type, as some goals use boolean logic in the
middle of arithmetic computations.

EXAMPLE 5.2.2
With zify, itis possible to preprocess the following goal:

forall (n : nat), n+n = n
The obtained associated goal is then the following one:

n : nat p, : Z.of_nat n = 0

Z.of_nat n + Z.of_nat n = Z.of_nat n

Here, the p, property represents the partiality of the embedding of n into Z.
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The comparison operator used in the output goal is the one of type Z.

5.2.3 Themczify extension

Thereis an extension to zify called mczify [54], whose purpose isto manage the [54]: SAKAGUCHI (2019-2022), Micromega tac-
various integer types defined in the MATHCoMP library, as well as the associated ~ ficsfor Mathematical Components
operators. It was built thanks to the extensible nature of zify, since it consists of

a series of declarations of instances of the type classes presented previously. The

declarations linked to the MATHCOMP operators make mczify a masterpiece, as

they are generic operators.

EXAMPLE 5.2.3
Thanks to the mczify upper layer, the following goal can be handled by zify:

forall (x : int), x =1 > x *x x = x

The x * x subtermisactually 8GRing.mul int_Ring x x, where GRing.mul is
the projection used to get the multiplication operation from the ring instance
int_Ring declared in the MATHCoMP library for type int. In the same way,
x = 1 is actually @0rder.ge int_porderType x (@GRing.one int_Ring),
where int_porderType is the instance of the MATHCOMP structure represent-
ing order relations for type int. Note that the value 1 is also a field of the ring
structure. The declarations added by mczify thus allow using MATHCoMP’s ad
hoc polymorphism on the theory of arithmetic and on logic, while remaining
compatible with zify.

5.2.4 Limitationsofzify

Itis clear that the zify tactic fulfils its role as a preprocessing tool for lia, as the
base declarations present in the plugin for the various type classes presented tar-
get the exact set of goals recognisable by the automation tactic. The tool, like the
target tactic, is able to step under the various quantifiers and logical connectives
present in the goal, as well as preprocess the operations and signature values of
PRESBURGER arithmetic, this for the integer types of the standard library, i. e., the
most frequently used. Thanks to its extensibility, the plugin is not limited to these
reference types. As the mczify extension shows, it can be extended to the types
and operators of a custom library, including those of a certain complexity.

However, this ad hoc tool can hardly be used in a different context. For instance,

within the class of decidable goals, which are frequent in proofs and not very

interesting for humans to prove,® lie the SMT problems, in which uninterpreted 8: Itisthe class of goals where automation is
symbols appear, and in particular, functions.’ Several plugins for CoQ can be the most expected.

used to send these statements to SMT solvers, such as ITAUTO [55] or SMTCoq, 2 This theory is called fheory of equality,
but these interfaces also have an input signature that must be respected.’® In Lh:' ;:Z;;i%r;gl;:::pczt:; ':ui?ﬂTO\;Z;abUIary’
this sense, they suffer from the same problem as the lia tactic. However, for [55]: BESSON (2021), “Itauto: An Extensible In-
such statements, the tools of the zify family are insufficient by design, as they tuitionistic SAT Solver”

were not created with the aim of handling these cases going beyond the logical
fragment provable by lia. For example, in the case of an uninterpreted function
f : int = int applied to aninteger x, the tactic zify treatsterm f x asa sin-

10: The SMTCoQ project has a preprocessing
phase but it is basic and not very extensible.

gle value of type int. This situation is acceptable in the context of the use of lia,
as the behaviour of the tactic is aligned with that of zify, but if the associated
statement is given to an SMT solver, it may fail to prove it because of this informa-
tion loss during preprocessing.
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For example, in the case of an automation tool that would need to remove any
logical element expressed in Prop, the zify tactic would perform incomplete
processing. Indeed, although relations on integers can be replaced with their
boolean counterpart, a logical connector in Prop cannot be turned boolean, be-
cause the BinRel class would in this case require Prop to be embeddable into
bool, which is not true in the general case. It seems interesting to give the pre-
processing tool features for logic that are independent from what is done on the
signatures of theories.

Another conceptual limitation of zify is the use of CoQ terms to store user infor-
mation. Using typeclasses allows exploiting the inference features of Coq, but
forces the developer to model their data in a CoqQ type, which can lack flexibil-
ity. For example, a typeclass is needed for each possible arity on operations and
relations. In addition, it can become difficult to capture the various possible as-
sociations between types and symbols in a same Coq type, especially if we want
to build a preprocessing tool that supports polymorphism and dependent types,
which is not the case of zify. As a result, there is a gap to be filled between the
initial goals entered into CoQ by the user and proof automation tools.

EXAMPLE 5.2.4
The following goal belongs to the UFLIAM theory:

forall (f : int = int) (x : int), f (2 * x) <? f (x + x)

It is theoretically provable by an SMT solver, but it is outside the fragment ac-
cepted by the tactics of the zify family. Without preprocessing, the pluginsin
charge of delegating proofs to an SMT solver cannot prove it. The aim of TRAKT
is to bridge the gap between this kind of goals and these plugins.

11: Uninterpreted Functions and Linear Inte-
ger Arithmetic.



Theoretical mode of operation

The first prototype developed in this thesis, TRAKT [12], is a tool for preprocessing
by goal canonisation in CoQ, with the aim of extending the preprocessing carried
out by the zify tactic to statements from the SMT family. We therefore want to
go beyond the limits of zify without introducing any regression in the features
already present. This chapter looks at how canonisation is carried out in TRAKT.
First, we list the kinds of information that the user can provide to the tool (§ 6.1),
then we detail the algorithm used to solve the theoretical problem (§ 6.2).

6.1 Gathering user information

Canonisation is only made possible by the knowledge of the various existing em-
beddings that start from the terms found in the input goal given to the prepro-
cessing tool. TRAKT allows different kinds of information to be declared: type
embeddings, logical embeddings, symbol embeddings, and conversion keys.

6.1.1 Type embeddings

As explained in § 3.3.2, to perform proof transfer, it is necessary to define a rela-
tion between source and target types. In TRAKT, this relation is bijection, and it is
defined for inductive types with no parameters or indices, such as integer types.
We declare that a type A can be embedded into a type B when there is a bijec-
tion between them:?

Y(¢p: A= B)(p:B— A). (P o ¢ =id) X (¢potp =id)
A command is provided for the user to declare this information:?

Trakt Add Embedding A B ¢ ¢ m; m,.

This declaration allows embedding any value of type A or any functional type
containing A into the associated target type. For example, a function of type
A — A can be embedded as a value of type B — B. In particular, TRAKT is able
to handle uninterpreted symbols present in statements of the SMT class, as well
as universally quantified variables having a type eligible for embedding.

Partialembeddings There are relevantinstances of preprocessing for which the
two embeddings functions are not inverses. This is the case for the embedding
of N into Z for example, where the pseudo-inverse embedding function is not
injective since it associates a default value to negative integers, as they have no
equivalent in the space of natural numbers. In this case, we can only prove a
weakened version of retraction, in which the property is only true on values for
which 9 does not truncate, i. e., if there is an antecedent in A for these values.
In the case of the embedding of N into Z, this condition called embedding condi-
tion will be positivity. The embedding condition is represented by additional data

6.1 Gathering user information . 51
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6.2.3 Theory-specific preprocessing 58
6.2.4 The trakt tactic . ....... 59

[12]: BLoT et al. (2023), “Compositional pre-
processing for automated reasoning in de-
pendent type theory”

1: We denote as = pointwise equality, i. e.,

f=g = Iz.fz=gxz

2: Here, m; and m, represent the section
and retraction proofs showing that ¢ and §
are inverses of each other — respectively the
first and second proofs of the pair under the
3i-type here on the left.
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in the proof supplied by the user: the condition and a proof that any embedding
from A respectsit. A partial embedding is therefore defined as follows:

Y(¢p:A— B)(: B— A)(P:B—P).
(h o =id) x (IIb: B.Pb — ¢ (¢pb) =b) x (la : A. P (¢ a))

The command to add type embeddings to TRAKT accepts partial embeddings:? 3: Here, my is the proof of conditional re-
traction and mp is the proof that any embed-

Trakt Add Embedding A B ¢ ¢ P My TMop Tp. ding from A verifies the embedding condi-
tion.

When embedding a variable, the condition will be made explicit so that it is al-
ways possible to prove that the final goal implies the initial goal. Thus, an unin-
terpreted function f : N — N will be replaced with a function f/ : Z —» Z
packed with the following property:

Mr:Z. z>0—f'2>0

6.1.2 Logical embeddings

In a statement of the SMT class, the subterms contained in one of the processed
theories are atoms in the tree that represents the logical formula, the nodes of
this tree being the logical connectives, equalities, and other predicates of arbi-
trary arity. Depending on the automation tactic targeted after the use of TRAKT,
these predicates must also be translated, either to a boolean version or to a ver-
sion in P. TRAKT allows declaring an embedding between two predicates P and
Q of the following types, where each type T} is either T; itself, oran embedding
from T;:

P:Ty .. —-T —L

Q:T - —>T, L

The declaration is made by proving an equivalence between both predicates:

Ozy - z,. Pzy -z, N Q (67 1) - (B )

L |L Mg 1/

B| B =

P| B | APb P&b=1g
B| P | NP b=1g+ P
P| P “

The logical codomains of the predicates L and L’ are either P or B, and Xy, ;.
is a way to express equivalence depending on these codomains. ¢} designates
an embedding function between T; and T that is optional at the meta level: if
both types are identical, this term is absent.

EXAMPLE 6.1.1
In the case of an embedding of equality over type int into boolean equality
over Z, the proof to be declared to TRAKT has the following type:

forall (x y : int), x = y <> Z_of_int x =2 Z_of_int y = true

In this goal, Z_of_int is the embedding function from int to Z and =? isthe
boolean equality over Z.

The command available to the user for declaring logical embeddings is:
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Trakt Add Relation n P Q m.

Value n isthe arity of the declared predicates,* P and Q are the source and target
relations, and m_is the proof of equivalence between the two predicates.

6.1.3 Symbol embeddings

The basis of amathematical theory is often a set with operations. The signature of
atheoryin CoQis therefore a type called carrier along with values and operations
defined over this type. Type embedding makes it possible to manage variability
on the carrier types in the various goals, but the symbols from the signature still
need to be processed. To that end, TRAKT also makes it possible to declare em-
beddings between the various symbols, of any arity, by giving a source symbol
and a target symbol, as well as the morphism property:

$:Ty — o Ty

s’ :Tll —> —)T;H_l
Mz, - x,. ¢3»+1 (s2y - ,) = 8 (@] T1) (], )

EXAMPLE 6.1.2

We can embed addition over type nat into addition over Z by giving a proof
of the statement from Example 5.2.1, and the zero of nat into the one of Z by
making explicit for TRAKT that Z.of_nat 0 = Z0.

The declaration of a symbol is done through the following command:
Trakt Add Symbol S S' mg.

Values S and S' are the source and target symbols, and g is the morphism
proof.

6.1.4 Conversion keys

For performance reasons in the implementation, the default term recognition in
TRAKT is purely syntactic. However, in order to keep the additional features pro-
vided by mczify and presented in Example 5.2.3, if the user declares embeddings
of concrete operations that are then packaged into structures, the preprocessing
tool must be able to detect that generic projections available for these structures
yield the same terms as the ones previously declared. It is therefore necessary
to be able to use CoqQ conversion locally for these terms, that we call conversion
keys.

In Example 5.2.3, if the user declares an embedding from concrete multiplication
over type int, then using generic notations in the goals should not impact pre-
processing. Therefore, @GRing.mul int_Ring must be preprocessed as if the con-
crete operation had been used there, which is possible by declaring GRing.mul as
a conversion key. Such behaviour is possible because the projection reduces pre-
cisely to the concrete operation. The type of the proof will thus not be invalid.

The command used to declare conversion keys is the following:
Trakt Add Conversion K.

where K is the term to declare as a conversion key.

4: This information is required so that it is
possible to declare particular relations ex-
pressed in several terms, such as equality,
which takes a type argument.
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6.2 Preprocessing algorithm

Using all the information provided to TRAKT by the user, the tool is able to prepro-
cess the input goal. This section details how the preprocessing algorithm works
on universal quantifiers, logical connectives and the subterms belonging to a the-
ory, before presenting the trakt tactic thatimplements it.

The algorithm takes a goal to be preprocessed as input, and is parameterised by
the target type desired by the user to express logic as well as the target type for
thetheory to be preprocessed in the goal. It then generates an output goal as well
as a proof thatitimplies the input goal. Due to the polarity of logical connectives,
on some subterms this proof of implication must be generated in the opposite
direction, a subtlety handled by the algorithm.

Unless explicitly stated, in the examples, we consider an embedding towards type
Z and logic expressed in Prop.

6.2.1 Handling universal quantifiers

The first construction encountered in a goal to be preprocessed is often a univer-
sal quantifier. This case is handled by a recursive call on the subterm, yielding
a proof, and a combinator to extend this proof to the quantifier. On the other
hand, the type of the variable bound in the new goal must make maximum use of
the type embeddings declared by the user, functional types also being taken into
account, as explained in § 6.1.1. The proof generation process therefore acts dif-
ferently depending on the type of the bound variable before and after translation,
and the polarity at the time of translating the quantifier.

Unchanged type If the type of the bound variable does not change, then we
must prove
Ilz:A.B” — IIz: A.B

from the proof p : B’ — B obtained on the subterm.> The combinator to use is
the following, regardless of the polarity:

ANH :I(z: A).B')(z: A).p (H z)

Embedded type, covariantcase If the type changes, then all occurrences of vari-
able z are subjecttoa ¢ 4., 4, embedding when the subterm is translated.® The
output subterm at the level of the quantifier is therefore obtained by ignoring
these embedding functions, i. e., by replacing all occurrences of ¢ 4., 4, £ with
avariable z’ of the same type A’, in order to obtain a new subterm depending
only on the new variable 2’ and to be able to close the quantified term. Thus, in
the covariant case, the proof to be provided at the level of the quantifier is

Iz’ : A”.B” — Ilz:A.B

and we start from a proof p : B’ — B.” Here, B” is the translation of subterm
B’ in which we have replaced the embeddings of = with z’.® Consequently,
the combinator can instantiate the hypothesis with the embedding of variable

5: The contravariant case swaps B and B’
in the types of the proofs.

6: Here, ¢, is a combinator adding all
the necessary embedding functions from the
potentially functional type T to the associ-
ated type T".

7: The case of partial embeddings is ex-
plained in the next paragraph.

8: B” = B/[¢ goyar @ i=z']
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z, providing a proof of B”[z’ := ¢ 4., 4» ] = B’ . Proof p can then be applied
directly. The new combinator is as follows:

A(H :11(z" : A"). B")(x : A).p (H (pama ©))

In the case where explicitly casting = from A to A’ involves a partial embed-
ding, the bound variable z’ in the output goal must come with a property P z’
combining various embedding conditions defined in § 6.1.1. The proof to be pro-
vided is therefore the following:

Iz’ : A’. P2’ - B” — Ilz:A.B

As the combinator instantiates =’ with the embedding of x, the property is al-
ways true, by composition of the proofs supplied by the user.® If we denote this
proof combination 7% , the combinator in the case of partial embeddings is the
following:

NH :I(z" : A’). Pz’ - B")(z: A).p (H (pgopur ) (Tp T))

Considerthe following statement, representing a proof that a function is constant
by recurrence on its domain, natural numbers:

forall (f : nat = nat) (k : nat),
f 0=k - (forall (n : nat), f (Sn) =fn) >
forall (n : nat), fn =k

During a preprocessing phase where nat has been declared embeddable into Z,
the first quantifier is changed into a new bound variable f' : Z - Z along with
a property combining twice the embedding condition of nat into Z:

forall (x' : Z), x' =2 0> f' x' =20

In the proof for the quantifier, this property is proved thanks to the fact that the
concrete value for f' is a composition of f with the embedding functions be-
tween nat and Z:

F' = fun (x : Z) = Z.of_nat (f (Z.to_nat x))

In particular, any application of f' toaterm t can be seen as the application of
Z.of_nat to f (Z.to_nat t), so it is positive thanks to the proof of the embed-
ding condition given when declaring the embedding from nat to Z:

forall (n : nat), Z.of_natn = 0

Embedded type, contravariant case 1°.

The contravariant case removes the need to prove the embedding conditions,
as the implication has to be proved in the other direction, and they become ad-
ditional hypotheses rather than arguments to be provided to use a hypothesis.
However, these conditions are still useful for eliminating embedding identities
appearing when hypotheses are instantiated. Indeed, the proof to build has the
following type:

Iz:A.B — Ilz’:A.Px’— B’

The combinator therefore has at its disposal a variable =’ : A” as well as a proof
of P a’, and it must instantiate a hypothesis H : II(z : A). B. The solution is
the inverse embedding of z’, that can be written as 4., 4-. We then obtain a

9: Value mp in each declaration of partial em-
bedding.

10: Here, we only deal with the case of par-
tial embedding, the other cases can be ob-
tained by simplifying it.
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proof of Bz := t)4,.4 Z’], knowing that we have the proof on the subterm
p : B — B’. Note that p is built from variable = obtained by going under
the quantifier, so it can be expressed as a function of z. Thus, by substituting
Yawar & for z in p by a meta-level operation, we can apply this proof to the
hypothesis instantiated earlier with this same inverse embedding value, yield-
ing a proof of B[z := 14,4 2’]. However, we still have to prove B”, i.e.,
B’[¢p g4 T := ] by definition.

To unify these two types, we can note that as the substitution performed in the
first type replaces the occurrences of z with the inverse embedding of z’, it also
replaces the occurrences of the embedding of = by a composition of embeddings
applied to z’:

T =P = GanarT = (Bana © Vawa)T

Thanks to the proof of the embedding condition available for z’ , we can system-
atically rewrite this composition into an identity wherever it appears in the proof
of B[z := 14,4+ ¢],and the final proof obtained isindeed B”. The contravari-
ant combinator is therefore as follows:

AH : T(z : A). B)(z' : A')(c: Pa'). " (pl& = Yan '] (H (Ya0a 7))

where 7" is the rewrite proof of all compositions ¢ 4., 4r © ¥ 4.4, into identi-
ties in the type of the argument, using the proof for which ¢ is the witness.

Let us take a simple statement over any natural number:
forall (n : nat), n*0=0

Its preprocessing yields the following statement:
forall (n' : Z),n' =20 —>n' x0=0

A contravariant proof givesproof p : n * 0 = 0 = Z.of_nat n * 8 = 0 onthe
subterm. The necessary proof to allow goal substitution is the following:

H : forall (n : nat), n * 0 =0
' Z
c:n' =0

As explained above, we build a new proof based on p by replacing variable n
with Z.to_nat n',and we applyitto H (Z.to_nat n'). We obtain a proof of

Z.of_nat (Z.to_nat n') * 0 = 0

and proof ¢ of the embedding condition on n' allows us to rewrite this embed-
ding composition into an identity thanks to a user lemma,! and conclude.

6.2.2 Handling logical connectives

Initially, the algorithm traverses the quantifiers as well as the logical parts of the
goal, i. e., the various logical connectives, until it reaches the predicates or rela-
tions marking the transition to the subterms specific to a theory. At the level of
each connector, an associated proof is applied, enabling one or more recursive
calls to be made on the subterms. Since the aim is to generate a proof of implica-
tion between both goals, we use morphism properties of implication with respect

11: Value myp when declaring the partial em-
bedding.
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to logical connectives. Thus, the construction of a proof of implication by travers-
inga K P, -+ P, connector can be done from the proofs of implication built on
the P; arguments, in one direction or the other depending on the polarity of the
position of each argument for this connector.

The expected morphism lemma for K has the following type:

np, - P, P - P..
(P, oK P)) > = (P, oK P)) 5> (KPP, +KP, -~ P,)

— if position ¢ is covariant for connector K

where off :=
+ otherwise

Preprocessing a disjunction A \/ B amounts to generating A' and B' respec-

tively as well as a proof of A' \/ B' = A \/ B from subterms A and B. In this

case, TRAKT uses a lemma showing that implication is @ morphism for disjunc-

tion:

Lemma or_impl_morphism : forall (A B A' B' : Prop),
(A* >A) > (B'">B)—=> (A" VB' = AV B).

This is an instance of the general case above, where ¢} =— forall ¢ and n = 2
because all positions are covariant, whereas in the case of an implication, the first
argument would be in a contravariant position.

Handlingbooleanlogic Ifthetargetlogical typeis different from the logical type
of the inspected connector, then an attempt is made to express all the arguments
of the connector in the target type. If this is possible, then we can replace the
connector with its associated version by adding an implication lemma between
both.

If we target bool for logic and the goal contains a disjunctionin Prop, we attempt
to pre-process each argument into a Boolean injected into Prop. Where possible,
we can apply the following lemma that allows us to use boolean disjunction ||
in the output goal:

Lemma orb_or_impl : forall (b, b, : bool),
b, || b, = true = b; = true \V b, = true.

By induction, itis thus possible to transfer an entire logical tree from Prop to bool
or vice versa, when all the atoms allow it.

Logical atoms The term is traversed until a logical atom is found, i.e., either
True or False, or a predicate declared in TRAKT under which terms contained
in the theory to be preprocessed can be found. This is the case of logical em-
beddings defined in § 6.1.2, where the proof given by the user is a logical equiv-
alence from which a proof of implication can be obtained. In the case where the
arguments of the predicate are in a type eligible for an embedding, the version
of the relation used in the output goal introduces embeddings in front of these
subterms, paving the way for the specific preprocessing detailed in the next sub-
section.
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We consider the following goal:
forall (x : int), x = x

We assume that the user has given a proof of embedding from equality over int
into boolean equality over Z, presented in Example 6.1.1. From this proof, we can
get an implication in the desired direction — here, we assume the direction to be
covariant:

forall (x y : int), Z_of_int x =? Z_of_int y = true = x =y

So, when going through this node, we justify the transition to the target relation —
boolean equality — and launch two recursive preprocessing calls on Z_of_int x,
on either side of the equality.

6.2.3 Theory-specific preprocessing

Once it is under the logical atoms, the aim of TRAKT is to embed as many values
as possible into the desired target type. The algorithm will therefore inspect each
node and exploit the various morphism proofs declared by the user. All unknown
values are traversed and left untouched.

Embedding function descent Inspired by zify, the preprocessing algorithm of
TRAKT introduces embedding functions as soon as possible into the initial goal be-
fore pushing them towards the leaves of the term. These embedding functions
are the trigger for all the rewrites. This is because morphism lemmas are used to
replace their left-hand member in the input term with their right-hand member
in the output term, and the left-hand member has a leading embedding function
where possible. The introduction of an embedding, for example by means of a
predicate equivalence proof, allows all the morphism lemmas to be used in a cas-
cade down to the leaves of the tree.

EXAMPLE 6.2.1
Consider the following goal:

forall (x y : int), x *y + x = x * (y + 1)

If the user has declared a logical embedding from equality over type int to
equality in Prop over type Z for example, then the equivalence proof allows
the algorithm to be launched on the two members of the equality preceded by
an embedding function. If all the operations have been declared embeddable
into their counterpartsin Z, then the left-hand member will undergo this list of
rewritings, pushing all the embedding functions down:

Z_of_int (x * y + x)
Z_of_int (x * y) + Z_of_int x
Z_of_int x * Z_of_int y + Z_of_int x

All the equality proofs are extended to the logical atom in which they are used, so
that they can be composed by transitivity and turned into a single equality proof
between the input and output logical atoms.

When the type of one of the arguments of a non-interpreted function is embed-
dable, in order to preprocess this argument correctly, an embedding identity is

inserted in front of this argument.!? This ensures that the argument is preceded 12: Here, we use the first identity provided
by the user, which is unconditionally true for
any embedding:

poo=id
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by an embedding function before being preprocessed by TRAKT.

Handlingtheleavesofthetree Atthe leaves of the tree, TRAKT removes as many
embeddings as possible to obtain an output goal expressed entirely in the target
type. These leaves are either zero-arity constants or variables.

In the first case, the proof provided with the constant allows erasing the remain-
ing embedding in favour of a new constant in the target type. This is the case
in Example 6.1.2 where the zero of type nat is embedded into the one of type Z
using a lemma involving an embedding on the left-hand member.

In the second case, that of a variable z : T, if type T' can be embedded into
T’,then the variable is necessarily the argument of a composition of embedding
functions ¢r.,7. It then suffices to replace the term ¢.,,7» & with the output
variable z’ : T”. This substitution is valid, the corresponding proof being per-
formed when the output goal is closed. Indeed, repositioning the new quantifier
above a translated open term ¢, containing embeddings on variable x, amounts
to extending a proof of ¥ — ¢, obtained by a recursive call, to the following im-
plication between the quantified types:

Iz’ : T°.¢ [pppz =2 — Mz:T.t

EXEMPLE 6.2.2
Going back to the goal of the previous example, descending the embedding
functions in the two members of the equality gives the following two terms:

Z_of_int x * Z_of_int y + Z_of_int x
Z_of_int x x (Z_of_int y + Z_of_int 1)

To complete the preprocessing, we apply the lemma allowing us to rewrite the
value 1 intype int into its counterpartin Z, and we close the term with new
quantifiers x' and y', to obtain the following final goal:

forall (x' y' : Z), x" *y' +x" =x" » (y' + 1)

6.2.4 The trakt tactic

The algorithm presented above has been implemented in the form of a tactic
trakt. As soon as we switch to proof mode, we call trakt to preprocess the goal,
before letting an automated proof tactic finish the proof.

This tactic takes two arguments corresponding to the parameters of the algo-
rithm: the target type for the theory being processed and the type to express logic.
Thus, if integers are expressed in Z and logic in Prop, we will call the tactic with
these arguments.

Several of the arithmetic goals presented in this part can be proved using various
declarations and the following tactic combination:

Proof. trakt Z Prop; lia. Qed.

When the goal requires the theory of equality, we can use a tactic calling an SMT
solverinstead of 1ia, suchasthe smt tacticfrom SMTCoQ orthe one ofthe ITAUTO
project.
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Itis also possible to preprocess a goal just to rewrite its logical part, omitting the
first argument. We then switch to a boolean goal by calling trakt bool.

In the case of a theory for which the only relevant preprocessing before using an
automated proof tool is to exploit the decidability of predicates, there is no need
to activate the theory-specific pre-processing features of TRAKT. We therefore re-
strict the tool to a logical preprocessing by removing the first argument.

A priori, the information supplied to TRAKT must be terms declared before the
proof, as this information is stored in a database that persists after the proof has
been completed. However, in certain proofs, it may be relevant for some infor-
mation to be made known to TRAKT, particularly relations. The tool has a feature
to cover this case, with a new syntax:

trakt T L with rel (R, R', m).

where T and L are the target types for theory and logic, and the triplet corre-
sponds to a relation declaration as presented in § 6.1.2.

The most telling example to illustrate the need for this feature is decidability of
a relation on a local type. Indeed, if a goal quantifies over a type A and there is
information implying, for instance, that equality over A is decidable, then it may
be relevant to introduce it into the proof context, make the decidability proof ex-
plicit,and call trakt with this additional piece of information, in order to prepro-
cess the rest of the goaland perhaps obtain a proof that is simpler to complete.

Finally, as the algorithm implemented in the trakt tactic allows reasoning in
both directions thanks to the polarity management described previously, it can
be used for forward chaining preprocessing without any additional effort. We can
therefore preprocess a hypothesis rather than the goal, this time by generating a
proof of implication of the new hypothesis from the old one. The syntax proposed
by TRAKT in this case is the following:

trakt_pose T L : Has H'.

where H is the hypothesis to be preprocessed and H' the name to be used for the
new hypothesis obtained. The other features of TRAKT are also available in this
direction.
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Conclusion and perspectives

The TRAKT plugin, whose concepts were presented in the previous chapter, has
been implemented in CoQ.! This chapter evaluates this tool that completes an
ecosystem of automation tools available to the CoqQ user (§ 7.1) and can interact
with some of them. TRAKT improves on zify’s answer to the problem of prepro-
cessing by canonisation for statements in the SMT class (§ 7.2). The plugin is par-
tially aligned with the specification defined in § 5, but it also has some flaws and
could be improved (§ 7.3).

7.1 Ecosystem of automation tools for Coq

Without automation, software as complex as a proof assistant cannot be used
properly. There are an increasing number of assistance tools to help the user in
the proofs. Thus, TRAKT fits into an ecosystem of tools used either to automati-
cally prove goals or to preprocess them so that other automation tools work even
better. In this section, we outline the difficulty of performing proofs in CoQ and
the need for preprocessing, citing a few proof automation tools that TRAKT can
work with; then we quickly introduce scope, another preprocessing tactic that
can associate with TRAKT.

7.1.1 The need for preprocessing

Technical yet uninteresting proof steps are the daily bread of program verifica-
tion. Fortunately, many elementary statements are easily solved by modern auto-
mated provers. The corresponding formal proof steps can in turn be automated,
e.g., using hammers, a powerful architecture for connecting external automated
theorem provers with formal interactive proof environments. For instance, the
CoQHAMMER [40] plugin equips CoQ with an instance of hammer, providing a tac-
tic called hammer that combines heuristics with calls to external provers for first-
order logic, so as to obtain hopefully sufficient hints, including relevant lemmas
from the current context, to prove the goal. The actual formal proof is then re-
constructed from these hints thanks to variants of the sauto tactic and hammer
outputs a corresponding robust and oracle-independent proof script.

For example, consider a property on the length of the reversed concatenation of
two lists:

Lemma length_rev_app : forall (B : Type) (1 1' : list B),
length (rev (1 + 1')) = length 1 + length 1'.

This lemma can be proved with CoQHAMMER, which provides the following script,
using auxiliary lemmas app_length and rev_app_length from the section of the
standard library dealing with lists:

Proof. scongruence use: app_length, rev_length. Qed.

Yet, as of version 1.3.2, COQHAMMER is not designed to exploit any theory-specific
reasoning, and thus cannot prove this slight variant, where b :: 1' replaces 1',
because it lacks arithmetical features:

7.1 Ecosystem of automation
toolsforCoQ . ......... 61
7.1.1 The need for preprocessing . . 61
7.1.2 Modular transformations of the
scopetactic . . . ... .. ... 63
7.2 Success of the plugin . . . .. 64
7.2.1 Examples of goals handled . . 65
7.2.2 Integration of TRAKT with other

7.3 Pathsofimprovement . .. .67
7.3.1 Polymorphism and dependent

types .. ... 67
7.3.2 Architecture of the preprocess-
ingphase . . .......... 68

1: The questions related to this implementa-
tion are dealt with in § 12.

[40]: CzAJKA et al. (2018), “Hammer for Coq:
Automation for dependent type theory”
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Lemma length_rev_app_cons : forall (B : Type) (1 1' : list B) (b : B),
length (rev (1 + (b :: 1'))) = length 1 + length 1' + 1.

In this case, users may resort to the SMTCoQ plugin, implementing a certificate
checker for proof witnesses output by SMT solvers. The latter automated provers
are indeed tailored for finding proofs combining propositional reasoning, congru-
ence and theory-specific decision procedures, e. g., for linear arithmetic. How-
ever, none of CoQHAMMER or SMTCoQ can in general reason by case analysis or
induction.

A variant of the sauto tactic can very well prove the first goal below about list
concatenation, but not the second one in which the first list is reversed:

Lemma app_nill : forall (B : Type) (1 1' : list B),
L+ U =[]->1=[A1U=I[]

Lemma app_nil_rev : forall (B : Type) (1 1' : list B),
rev 1+ 1'=[]—>1=[]A1 =[]

The SMTCoqQ plugin can be used to prove properties of linear integer arithmetic,
but only when they are stated using the type Z of integers from CoQ’s standard
library:

Lemma eZ : forall (z : Z),z=20—>2z<1—->2z=0.

Up to version 2.0, SMTCoQ is however clueless about any alternative instance of
integer arithmetic, e. g., the type int of unary integers from the MATHComP li-
brary, already mentioned previously.

Lemma eint : forall (z : int), z=0 > z<1 > z = 0.

Fortunately, CoqQ distributes the lia tactic, specific to linear integer arithmetic,
that can actually also prove lemmassuch as eZ. Moreover, lia canbe customised
to a user-defined instance of arithmetic thanks to the zify dedicated prepro-
cessing, presented in § 5.2. Once correctly configured for type int thanks to the
mczify extension, lia isequally powerfulontype int ortype Z and proves both
eZ and eint. However, as powerful as it may be on integer linear arithmetic, the
tacticis by nature unaware of the theory of equality. Hence, although it can prove
equality eintC from below, itis unable to prove the variant cong_eintC, because
the latter involves a congruence with the _ :: nil operation, alien to the theory
of linear integer arithmetic.

Lemma eintC : forall (z : int), z+1 =1 + z.
Lemma cong_eintC : forall (z : int), (z + 1) :: nil = (1 + 2) :: nil.

Proving the property expressed by cong_eintC requires combining different the-
ories, in this case integer arithmetic and the theory of equality, as SMT solvers do.
Yet, in this case as well, the SMTCoQ plugin cannot help, because the statement of
this factis phrased using type int instead of Z. The recent ITAUTO SAT solver [55],
implemented in CoQ, provides an alternate take on formally verified satisfiability
modulo theory, and organises the cooperation between the independent tactics
lia, for integer arithmetic, and congruence, for equality. As a consequence, the
smt tactic built on top of ITAUTO can benefit from 1lia’s preprocessing facilities.
For instance, as soon as lia’s preprocessing is correctly configured for type int,
the smt tacticis able to prove lemma cong_eintC.

However, lia’s preprocessing facilities are not known to the rest of the SMT de-
cision procedure. Thus, although the first goal below is solved by the latter smt
tactic, because lia has been informed of the boolean equality test = available

[55]: BESSON (2021), “Itauto: An Extensible In-
tuitionistic SAT Solver”



7 Conclusion and perspectives 63

on type int, the same tactic fails on the cong_eintCh variant, featuring an unin-
terpreted symbol f:

Lemma eintCb : forall (z : int), (z + 1 =1 + z) = true.
Lemma cong_eintCb : forall (f : int — int) (z : int),
(f(z+1)=f(1+2z)) = true.

Asitturnsout, although a variety of tactics implementing automated reasoning is
available to the users of the CoqQ proof assistant, finding the appropriate weapon
for attacking a given goal remains challenging. It is often quite difficult to antic-
ipate the exact competence of tactics based on first-order automated reasoning,
and to interpret failure. As a consequence, large-scale formalisation endeavours
may end up developing their own specific automation tools, like the list_solve
tactic in the VERIFIED SOFTWARE TOOLCHAIN [56, 57], for automating reasoning
about lists and arithmetic, which makes the number of available tactics multi-
ply even more, often redundantly. A form of generic preprocessing such as that
targeted by TRAKT therefore seems ideal to make existing automation tools more
flexible.

7.1.2 Modular transformations of the scope tactic

The scope [12] tactic is a combination of various preprocessing tactics with the
objective of reducing the Coq statements belonging to the SMT fragment to the
logical theory handled by SMT solvers, living at a lower level.? The preprocessing
performed by scope is orthogonal and complementary to the features of TRAKT,
so the two tools can work together in preprocessing SMT goals. Here, we present
three of the transformations performed by scope: generation of the inversion
principle for inductive relations, pattern matching elimination, and hypothesis
monomorphisation.

Inversion principle for inductive relations An inductive relation is an inductive
type representing a relation between terms, whose codomain is often Prop. When
a hypothesisis a witness of the relation between terms, it is possible to determine
from these terms the various constructors that may have been used to build the
witness. The inversion tactic uses this property to add hypotheses to the con-
text, but when using an SMT solver, it can be interesting to keep the inversion
principle as an additional hypothesis. The associated transformation in scope
does this job.

We consider the inductive relation representing the graph of the addition func-
tion between two natural numbers:

Inductive add : nat - nat = nat = Prop :=
| add0 : forall (n : nat), add 0 n n
| addS : forall (nmk : nat), add n m k = add (S n) m (S k).

A call to this transformation tactic adds a new hypothesis to the context, having
the following type:

forall (n m k : nat), add n m k <>
(exists (n' : nat), n=0Am=n" Ak=n")V
(exists (n' m' k' : nat),
addn'm' k" An=Sn" Am=n" A k=Sk")

[56]: ApPEL (2011), “Verified Software
Toolchain - (Invited Talk)”

[57]: APPEL et al. (2022), Verifiable C

[12]: BLoT et al. (2023), “Compositional pre-
processing for automated reasoning in de-
pendent type theory”

2: For example, quantifiers are in prenex po-
sitions and there are no dependent types.
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Pattern matching elimination Pattern matching, available in a high-level lan-
guage, is an unknown construct in an SMT solver. When a hypothesis contains
pattern matching, this transformation splits it into as many new hypotheses as
the number of cases.

Consider accessing the n-th element of a list. This function can be written in a
total way, either by using an optional return value to take into account the case
where n is greater than the size of the list, or by using a default return value. A hy-
pothesis giving the definition of the latter (nth_default) from the former (nth):

forall (A : Type) (d : A) (1 : list A) (n : nat),
nth_default A d 1 n =
match nth 1 n with
| Some x = x
| None = d
end

is replaced with two hypotheses, each one focusing on a case of the pattern match-
ing:

Hl : forall Ad 1 n, nth 1 n = Some x = nth_default d 1 n
H2 : forall Ad 1 n, nth 1 n = None —> nth_default d 1L n

1}
o X

Monomorphisation Most automated theorem provers do not handle polymor-
phism. However, many lemmas in CoQ are polymorphic. It is therefore useful to
implement a transformation that instantiates polymorphic hypotheses with the
types present in the goal, so that the solver can exploit them. The instantiation
of lemmas is performed by a heuristic that selects various types appearing in the
goal as potentially interesting instances.

In the following proof context, by instantiating H with option Z and list unit,

the proof becomes trivial for an SMT solver.

H : forall (A B : Type) (x1 x2 : A) (yl1 y2 : B),
(x1, y1) = (x2, y2) > x1 =x2 Ayl = y2

Z.of_nat n + Z.of_nat n = Z.of_nat n

7.2 Success of the plugin

Given the lack of existing tools with the purpose of canonising statements as a
bridge between the expressiveness of CoQ and the various decision procedures,
the presence of TRAKT improves the level of automation of several tactics avail-
able to CoQ users. The use of TRAKT does not show any notable regression com-
pared with zify, its main point of comparison, with regard to the specification
identified in § 5.1. Notations linked to ad hoc polymorphism such as those of
MATHCoMP presented in Example 5.2.3 are supported by TRAKT, offering a compa-
rable feature. Finally, the dedicated preprocessing for logic in TRAKT improves the
situation for the SMTCoQ plugin, which was the original aim while designing this
tool. This section uses a few example goals to demonstrate the effective features
of TRAKT, and then shows how the plugin can be used efficiently with SMTCoQ.
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7.2.1 Examples of goals handled

In the previous chapter, examples were chosen to illustrate precise aspects of
how TRAKT works. Here, let us take a concrete example and detail the entire pre-
processing phase from the user’s point of view.

The first example goal is the following:
forall (x : int), x * x = 0
By displaying MATHCOMP generic projections, the full goal is the following:

forall (x : int),
@0rder.ge int_porderType
(@6Ring.mul int_Ring x x) (@GRing.zero int_Ring) = true

First of all, we need to determine the canonical type of integers for the automa-
tion tactic under consideration, as well as the ideal logical type for this tactic to
work best. In this particular case, we can use the lia tactic and target the type Z
for integers and Prop for logic, for example.

An embedding must therefore be declared between int and Z. Next, the opera-
tions used in the goal must also be declared. Here, the operation is multiplication
mulz, whose counterpart in Z is Z.mul. Non-negative constants of type int, in
particular zero, are represented as embeddings from nat to int via the function
Posz. If we declare an embeddingfrom nat to Z,then it suffices to show that Posz
can be embedded into identity in Z so that all constant values of type int can be
embedded into Z with TRAKT. The order relation over int mustalso be declared
embeddable into Z.ge. Finally, the generic projections of MATHCOMP must be de-
clared as conversion keys. Here is the equivalent using the TRAKT commands:

Trakt Add Embedding int Z Z_of_int Z_to_int m m,.
Trakt Add Symbol mulz Z.mul ms.

Trakt Add Embedding nat Z Z.of_nat Z.to_nat m, ms.
Trakt Add Symbol Posz (@id Z) my.

Trakt Add Relation (@0rder.ge int_porderType) Z.ge m,.
Trakt Add Conversion GRing.mul.

Trakt Add Conversion GRing.zero.

Trakt Add Conversion Order.ge.

The proofs used have the following types:

m ¢ forall (x : int), Z_to_int (Z_of_int x) = x

n, : forall (x' : Z), Z_of_int (Z_to_int x') = x'

ng ¢ forall (x y @ int), Z_of_int (x * y) = Z_of_int x * Z_of_int y
n, : forall (n : nat), Z.to_nat (Z.of_nat n) = n

m; : forall (n' : Z), n' = 0 = Z.of_nat (Z.to_nat n') = n'

n, : forall (n : nat), Z_of_int (Posz n) = Z.of_nat n

m; : forall (x y : int), x = y <> Z_of_int x = Z_of_int y

We can then call trakt Z Prop and get the following goal, provable by the lia
tactic, as opposed to the initial goal without preprocessing:

forall (x' : Z), x' * x' = 0

Let us now show how two other goals we encountered earlier can be proved using
preprocessing by TRAKT.
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EXAMPLE 7.2.1
We take the goal of Example 5.2.4:

forall (f : int = int) (x : int), f (2 * x) <? f (x + x)

Subject to declarations similar to the previous example, preprocessing to-
wards Z and boolean logic with trakt Z bool yields the following goal, prov-
able by a tactic delegating proofs to an SMT solver:

forall (f' : Z > 7) (x' : Z), f' (2 = x') <? f' (x" + x') = true
EXAMPLE 7.2.2

Now, we take the goal of Example 6.2.1, replacing int with nat:

forall (x y : nat), x * y + x = x = (y + 1)

Preprocessing with trakt Z Prop gives the following goal, provable by lia:

forall (x' : Z)
XI *yl +X|

, X' =0 > forall (y' : ), y' =0 >

=x'" % (y' +1)

It can be seen from these examples that combining TRAKT with existing automa-
tion tactics effectively extends their input domain by making more signatures in-
telligible.

7.2.2 Integration of TRAKT with other tools

TRAKT can be used as a one-off preprocessing tool before using an automated
theorem prover, but it can also be used with several other preprocessing tools.
For example, TRAKT has been integrated into the scope suite of transformations
presentedin §7.1.2, then used in association with SMTCoQ, giving the SNIPER plu-
gin [12]. The role of TRAKT in this context is to canonise arithmetic and to ensure
that logic is expressed in bool as much as possible, in order to exploit decidabil-
ity of the predicates present in the goal. Here we look at an example of a highly
automated formalisation using SNIPER.

EXAMPLE 7.2.3

This example deals with a formalisation of properties of several variants of A-
calculus, such as strong normalisation, based on the MATHCowmP library. This
formalisation® includes deep embeddings of languages with binders, in which
DE BRUIJN indices are used to represent bound variables. The price to pay is
the need to prove technical and uninteresting properties about variable sub-
stitution and shifting. Goals in such a context often contain both arithmetic
and logical reasoning, and proofs require inductive reasoning. For instance,
untyped A-calculus is defined as:

Inductive term : Type :=
| var of nat
| app of term x term
| abs of term.

with the following shift and substitution functions:

Fixpoint shift d c t : term :=
match t with
| var n = var (if ¢ < n then n + d else n)

[12]: BLoT et al. (2023), “Compositional pre-
processing for automated reasoning in de-
pendent type theory”

3: We owe this example to Kazuhiko SAk-
AGUCHI.

Term shift d ¢ t is term t in which vari-
ables with an index above threshold ¢ have
been shifted by d positions.

Term subst n ts t is term t in which vari-
ables with an index above threshold n have
been replaced with terms contained in list
ts.
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| app t1 t2 = app (shift d ¢ t1) (shift d ¢ t2)
| abs t1 = abs (shift d c.+1 t1)
end.

Notation substv ts m n :=

(shift n 8 (nth (var (m - n - size ts)) ts (m - n))).
Fixpoint subst n ts t : term :=

match t with

| var m = if n < m then substv ts m n else m

| app t1 t2 = app (subst n ts t1) (subst n ts t2)

| abs t'" = abs (subst n.+1 ts t')

end.

Note that these definitions use addition, subtraction, and comparison on the
natural numbers defined in MATHComP. By adding them to the TRAKT database,
then performing an induction on the terms of the calculus followed by a call
to snipe, the main tactic of the SNIPER project, we can automatically prove a
number of properties on this A-calculus.

Lemma shift_add d d' c c' t :
c<?c' >c'<?c+d~—>
shift d' ¢' (shift d ¢ t) = shift (d' + d) c t.
Proof. revert d d' c c'; induction t; snipe. Qed.

Lemma shift_shift_distr d c d' c' t :
c' <?c~—>
shift d' ¢' (shift d ¢ t) = shift d (d' + c) (shift d' c¢' t).
Proof. revert d d' c ¢'; induction t; snipe. Qed.

7.3 Paths of improvement

Although TRAKT finds a use in the ecosystem of preprocessing tools for Coq, the
tool remains limited in some aspects. This section outlines these limitations to
justify further work.

7.3.1 Polymorphism and dependent types

Despite various efforts to make the translation more general, as the starting point
forthis thesis, TRAKT was designed with zify asatemplate. Assuch, the pluginin-
herits the various ad hoc aspects of the latter, being intended to preprocess arith-
metic provable by lia. In particular, embeddings follow the type class model of
zify. TRAKT certainly brings a level of flexibility to it due to the fact that the stor-
age of terms is external — at the meta level — unlike type class instances that
must strictly conform to a CoQ type, but by design, the class of terms that can be
declared is close to that of zify.

In fact, the type embeddings defined in § 6.1.1 concern simple types expressed
in a single term, which can be limiting in the case where we wish to declare poly-
morphic embeddings or embeddings based on dependent types. We can cite the
example of ordinal numbers, bounded natural numbers that are always partially
embeddableinto nat oralargerintegertype suchas Z,the embedding condition
being respecting the upper bound of the source ordinal.
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Another interesting example is canonisation when using container types on inte-
gers. The following goal:

forall (1 : list int), sum, 1 = 0

could be rewritten in Z for what concerns arithmetic, without affecting the rest.
Indeed, if sum;,, is defined as fold_left (+) 0 1,then we can rewrite the addi-
tion and the zero as those of Z to obtain the target sum. However, this kind of
embedding using polymorphic types is not allowed by TRAKT.

A second problem is the impossibility of not processing a value. In fact, in goals
involving dependent types that we wish to leave unchanged in the output goal,
some values can be used as arguments whose type must not change during trans-
lation, even though it is an embeddable type. One example is bitvectors whose
integer size must remain within the type initially used to encode it, because em-
bedding this value into another type introduces the risk of getting an ill-typed
output goal. TRAKT does not handle these special cases and always performs the
embedding when it is possible.

7.3.2 Architecture of the preprocessing phase

The structure of the preprocessing algorithm also limits the possibilities of TRAKT.
Indeed, the tool was designed in an incremental way. Initially built on the princi-
ple of composing morphism proofs to preprocess subterms belonging to a theory
whose signature can be embedded, the various additional features were grafted
onto the algorithm’s main recursive function, adding arguments to represent var-
ious pieces of information to be held in memory in the recursive calls. This ap-
proach has the advantage of being pragmatic and quickly providing a functional
tool that can be used in a real context, but it also has a few drawbacks.

Firstly, leaving aside congruence theory, that can always be processed on the fly,
TRAKT only allows one theory to be preprocessed at a time. If the goal contains a
mix of theories, TRAKT has to be called several times with preprocessing for one
theory each time.

Secondly, going from bool to Prop is done in two phases. In order to rewrite a
boolean subterm in Prop, the subterm b must be cast in Prop with an equality:
b = true, false = b, etc. If the subterm is under an uninterpreted predicate of
type bool = Prop, then it will not be possible to expressitin Prop inthe output
goal. In the current state of TRAKT, this information is not tracked during trans-
lation. When translating a boolean value, it is therefore not possible to know
whetherit can be replaced with its counterpartin Prop. Evenifthe boolean equal-
ity Nat.egb over natural numbers can be rewritten into the equality in Prop over
type Z, at the node of the relation, it will not be possible to know if the embed-
ding can be carried out. So, to translate from bool to Prop, a specialised logical
phase is run first, with the ability to look over a term to see if it is cast into Prop
in a way that allows rewriting. Once the first pass has been made, the goal is ex-
pressed in Prop and the remaining embeddings are possible. We will therefore
go from Nat.egb to @eq nat and thento @eq Z, requiring two user declarations
instead of one.

Finally, rewriting proofs take the form of an equality between a subterm before
and after rewriting. Their composition is done by transitivity, so all the equality
proofs are extended to have the same context and to be able to be composed. As
aresult, the contextis repeated with a slight variation at each rewrite, which gives
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the global proof on a subterm a quadratic complexity in space as a function of the
number of rewrites to be performed in this subterm.

Allin all, the flaws identified in this section can be corrected with ad hoc meta-
programming solutions, which allows keeping the current prototype. Alterna-
tively, drawing on the lessons learnt from the design of TRAKT, we can also take
up the problem of proof transfer, presented in § 3.3, and design a new preprocess-
ing tool with a more general approach, encompassing cases lying at the boundary
of what TRAKT can handle. This is the solution chosen for the second prototype
developed during this thesis, presented in the following part.



TROCQ:
PROOF TRANSFER
BY PARAMETRICITY



Introduction

The limitations identified while reviewing TRAKT show a need for generalisation
compared to the ad hoc approach inherited from zify. Rather than starting from
concrete relations between terms* and building around them an algorithm that
exploits the embedding functions to create the associated goal, we can abstract
these relations, first build the algorithm that exploits them, and then give them
content. We then say that two types A and B are related if there is a relation R
oftype A — B — [J. Next, we study the possibility to propagate these relations
by induction on typing.

This study is the subject of a line of work on the concept of parametricity or log-
ical relations [58], the aim of which was initially to derive properties on terms
from their types in polymorphic A-calculi. By giving types a relational interpre-
tation, we can obtain so-called “free” theorems. If two terms a and b are re-
lated, then we can find a relation between two terms C[a] and C’[b], where C
is a context and C’ is the associated context. This means, for example, that a
relation between two types A and B can be extended to lists of values in A
and B, whichin practice corresponds to operations like List.for_all2 in OCAML.
The extension of parametricity to dependent types and then to the type theory of
CoqQ makes it possible to internalise parametricity witnesses, i. e., proofs that two
terms are linked by a relation. In such a context, free theorems actually become
CoQ proofs, rather than meta-level properties as before.

The implementation of a parametricity translation [59] is a function that takes a
term to be translated — in our case, the goal — and produces two output terms, a
translated term — the associated goal — and a witness proving that the original
termis related to the translated term. In the empty context and on closed terms,
the parametricity translation in Coq is nothing other than a deep identity on the
goal, obtained by traversing it by induction on the syntax. To translate constants,
we add relations between each source constant ¢ and an associated target con-
stant ¢’. So, to translate addition in nat to addition in bin_nat, we provide a
relation R between both types as well as a relation between both additions, i. e.,
a proof that the addition of terms related by R yields terms related by R. Any
goal containing values and additions in nat can then be translated to an associ-
ated goal mentioning these terms in bin_nat.

In order to carry out a proof transfer, we need to be able to extract a function
from the parametricity witness. We then wish to enrich the relation propagated
through the syntax during the parametricity translation, in order to take advan-
tage of the general framework that this technique provides while obtaining more
information in the parametricity witness obtained at the end of the translation.
Of allthe possible enrichments, asymmetrical enrichments cannot be propagated
through all constructs, for reasons of polarity, particularly for the II-type. Stable
enrichment is possible through so-called univalent parametricity [14], at the cost
of adding the univalence principle to CoQ, which is necessary to translate uni-
verses. The witness obtained is then dense and rich in information, and contains
in particular the function necessary for proof transfer.

It is therefore possible to carry out proof transfer using a parametricity transla-
tion. Such a translation supports all language constructs and allows many goals
to be preprocessed. However, in this context, relations on constants added to the
context by the user before translation require a univalent witness that, due to the

4: In TRAKT, these are, for example, bijec-
tions or partial embeddings definedin§6.1.1
to relate types, or proofs of morphism with re-
spect to the embedding function defined in
§6.1.3 to link operations.

[58]: MITCHELL (1986), “Representation Inde-
pendence and Data Abstraction”

[59]: BOULIER et al. (2017), “The next 700 syn-
tactical models of type theory”

[14]: TABAREAU et al. (2021), “The marriage of
univalence and parametricity”



richness of this witness, is not always easily provable. Furthermore, the principle
of univalence comes in the standard version of CoqQ in the form of an axiom that is
regrettable to use as part of the preprocessing of a goal that could be done with-
out an axiom if the user did it by hand, by making manipulations similar to what
is done automatically by TRAKT. This limitation is the major motivation for the
development of TRocQ [15], an implementation of a new, more flexible and mod-
ular parametricity framework, in order to retain the generality of parametricity
while making parsimonious use of axioms, ideally reduced to cases where they
are strictly necessary to process the input term.

This section presents the theoretical concepts of TRocQ. First, we presentin more
details the context of this new plugin,® i.e., the path from the origins of para-
metricity to univalent parametricity, that forms the basis of the work done on
TROCQ, in the same way as zify for TRAKT (& 8). Secondly, we study the decom-
position of the univalent parametericity witness to expose its information, as well
as its recomposition into a hierarchy of parametricity witnesses and the construc-
tion of a single framework that makes all these witnesses work together (§ 9). Fi-
nally, we formulate this relation as a logical program, in order to expose as much
of the required context information as possible, with the aim of implementing it
as a translation in a tactic later on (§ 10).
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[15]: COHEN et al. (2024), “Trocq: Proof Trans-
fer for Free, With or Without Univalence”

5: The implementation is available in the
repository:

https://github.com/cog-community/trocq
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Parametricity
in dependent type theory

The limitations of TRAKT lead us to look for a more general approach to proof
transfer in CoQ. This chapter presents parametricity, a concept from the theory
of programming languages that gives the types of the A-calculus a relational in-
terpretation, allowing the redesign of the links between input and output terms
in the context of a preprocessing tool. Here, we define the original concept and
its extension to the A-calculus of CoqQ (§ 8.1). Then, we present univalent para-
metricity, an enriched version allowing generalised proof transfer in CoqQ thanks
to the univalence axiom, and we show why this technique is interesting regarding
the specification we gave for TRAKT initially (§ 8.2).

8.1 Motivation and definition

The notion of parametricity dates back to the appearance of polymorphism in A-
calculus. Originally a tool for reasoning about the properties of polymorphic func-
tions [13], it is now used to perform translations of terms. This section presents
these two aspects.

8.1.1 Typing and properties of A-terms

In the simply typed A-calculus, terms can have simple functional types or “arrow
types”, governed by the following typing rule LAM_,:

z:A+¢: B
I'X.t:A—> B

All functions of this calculus are monomorphic and have a concrete domain A
and codomain B. Thus, by defining a type B and primitive operations — and A
to represent booleans and logical connectives of negation and conjunction, the
function representing the NAND logical gate has a unique type:

T+ Aby by.— (b Aby) : B—B— B

However, in a A-calculus @ la CURRY,! there are functions with several possible
types. A primitive example is the identity function, Az.z. Since it can be law-
fully applied to any term in the language, this function has an infinite number of
types, each one depending on the type chosen for the bound variable: the func-
tion is said to be polymorphic. When this type can be abstracted and represented
by a variable, we refer to parametric polymorphism. System F allows represent-
ing these variables using an additional binder, A. In this way, identity can be
uniquely typed:
'kAz.z: Ao — o

The main observation of parametricity is that the body of a polymorphic function
never exploits the type of the bound variable, i. e., the type parameter. This makes
it possible to extract properties about the behaviour of polymorphic functions
from their type, i. e., without needing to inspect the body of the function. For

8.1 Motivation and definition . .73
8.1.1 Typing and properties of

Aterms . ... 73
8.1.2 Raw parametricity translation 74
8.1.3 Limitations of the raw transla-

tion . ... ... ... 75
8.2 Univalent parametricity .. .75
8.2.1 Enrichment of parametricity
witnesses . . . ... ... ... 76
8.2.2 Type equivalence and univa-
lence ... ... ... .. 77
8.2.3 Univalent parametricity transla-
tion . ... ... L. 79
8.2.4 Omnipresence of the univa-
lenceaxiom. . .. .. ..... 81

[13]: REYNOLDS (1983), “Types, Abstraction
and Parametric Polymorphism”

1: Thisisthe presentationin which functions
have no typing annotations.
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instance, the polymorphic type of the identity function can be used to uniquely
determine its implementation. Indeed, the function receives as input a value of
a type whose structure it cannot exploit, because it is polymorphic, and must re-
turn a value of the same type. As a result, there is no possible implementation
other than the one that returns the input value unchanged. These properties,
available directly at the type level, are referred to as “free theorems” in the liter-
ature [60].

8.1.2 Raw parametricity translation

Type theory allows representing parametricity properties and their proofs inter-
nally, i.e., in the same calculus as the one which the terms being studied live in.
In this way, results previously obtained by manual analysis at the meta level can
in this context be given automatically by a syntactic translation from the calculus
toitself. Such translations can take into account dependent types [61], inductive
types [62], as well as the full Calculus of Inductive Constructions,? including its
impredicative sort [63].

The work of BERNARDY et al., KELLER, and LASSON makes it possible to define what
will from now be referred to as the raw parameticity translation, that essentially
defines a logical relation [ T ] for any type T, by induction on the syntax:

[01=10
[T,z:A]:=[T],z: Az’ : A zp:[A] z 2

[O,] = MA. Ao A 50,

[z] :==g
[T A.B] = \f f/.Ti(w : A)(&' : 4)(oz : [A] 25). [B] (F2) ( =)
[Az: A.t] =Xz : A)(z' : A)(zg : [A] z2'). [ t]

[tu] ==[t]uv [u]

This presentation uses the standard convention that ¢ is the term obtained from
aterm t by replacing every variable z in ¢ with a fresh variable z’. A variable
z is translated into a variable zp with a fresh name. This translation preserves
typing in the following sense:

THEOREM 8.1.1 (Abstraction theorem)
If T¢:T,then [T]F¢:T, [T]F¢:T,and [T]F[t]:[T]tt.

Proof. See for example [63]. [ |

This translation generates precisely the statements expected for a family of types
or a parametric program. For instance, the translation of a dependent product
given aboveis arelation that links two functions f and f” ifthey produce related
terms when given related terms as input.

[60]: WADLER (1989), “Theorems for Free!”

[61]: BERNARDY et al. (2011), “Realizability
and Parametricity in Pure Type Systems”

[62]: BERNARDY et al. (2012), “Proofs for free -
Parametricity for dependent types”

2: Itisthe Calculus of Constructions, defined
in § 2.1.3, equipped with inductive types de-
finedin §2.2.2.

[63]: KELLER et al. (2012), “Parametricity in an
Impredicative Sort”

Figure 8.1: Raw parametricity translation for
CC,,.
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8.1.3 Limitations of the raw translation

In our context, raw parametricity has two main limitations, namely, the fact defini-
tional equalities are not preserved and the weakness of parametricity witnesses.

In the first case, TABAREAU et al. take the example of a proof of false® from a con-
tradictory equality over natural numbers:

forall (n : nat), 0 = S n — False

We can prove this property by defining a type constructor P : nat —> Type that
is 0 = 0 in 0 and False otherwise. Next, we introduce n and the equality e,
and we must prove False. The proof is then obtained by dependent induction
on e: if we can prove a property Q 0 refl, then we have § (S n) e. By posing
0 n _ := P n,wemustthen prove P 0 toobtainaproofof P (S n). Since P 0 is
definedas 0 = 0, itis sufficientto provide refl for this proof, then we obtain the
proof of P (S n), i.e., False. However, in this last step, we exploit the fact that
the value P is defined using the induction principle on nat, itself defined using
pattern matching on the value of type nat supplied to it. So, as soon as the head
constructor of the argument of P is known, we can carry out a t-reduction step* to
select the right branch of the pattern matching. This conversion step is necessary
to conclude that the final term is well typed. We say that P 0 and P (S n) are
definitionally equal to — respectively — 0 = 0 and False.

If we use raw parametricity to translate the final proof term, we will associate
each constanton nat with a constant on a type associated with nat, forexample
bin_nat. In particular, the induction principle of nat will become an induction
principleon bin_nat whose type structureisthe same, i. e., induction takes place
from successor to successor as on type nat, whereas the constructors of bin_nat
encode binary values. Consequently, the induction principle that we associate
with nat_rect is not, unlike the latter, defined by directly pattern matching on its
argument. Thus, the translated proof term will not be able to exploit ¢-reduction
in typechecking. Indeed, CoQ will have to show that refl hastype P' b0, which
isimpossible without the information that the latter term is actually b0 = b0.The
use of conversion in typing is powerful, but penalises all translations that do not
preserve definitional equalities, as is the case with raw parametricity.

The second limitation of this translation is the weakness of the parametricity wit-
nesses. This is because, although the raw translation is able to generate the de-
sired goal after preprocessing,’ in this context, the parametricity witnesses relat-
ing the input and output terms are always relations or relation witnesses. Gener-
ating the associated goal is part of the work required for proof transfer, but just
knowing that both goals are related is not enough to replace the first with the sec-
ond. This is because rewriting the goal requires a function from one to the other,
which is not provided by the raw parametricity translation.

8.2 Univalent parametricity

To overcome the limitations of raw parametricity, one solution is to enrich para-
metricity witnesses so that it is still possible to get an implication between the
output goal and the input goal after translation. This is the promise of univalent
parametricity [14], a more powerful parametricity translation based on exploit-
ing the univalence axiom [64] and user declarations of equivalences between

3: That is, an empty inductive type called
False.

4: Thisis the reduction rule dealing with pat-
tern matching.

5: Provided that the parametricity context
contains the various relations describing the
substitutions desired by the user.

[14]: TABAREAU et al. (2021), “The marriage of
univalence and parametricity”

[64]: Univalent Foundations Program (2013),
Homotopy Type Theory: Univalent Founda-
tions of Mathematics
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types. In this section, we give details about the progressive enrichment of the
parametricity witness type, we make explicit the definition of equivalence used
in this context, then we introduce the univalent parametricity translation.

8.2.1 Enrichment of parametricity witnesses

To define a parametricity translation, we first define the translation of the uni-
verse, as this gives the structure of all parametricity witnesses relating types. We
then define the rest of the cases in the translation that extend proofs on subterms
to new constructions. For example, in the raw parametricity translation, the wit-
ness relating two types A and B isarelation A — B — [, and the translation
of the dependent product corresponds to a proof of the following property, that
states that from witnesseson A and A’ and B and B’, we can build a witness
on dependent products Ila : A. Bg and Ila’ : A’. B’ o’ :

I(AA : O)(Ag: A— A’ —0).
I(B: A—0O)(B : A —0).
(I(a: A)(a' : A’).Agad’ - (Ba— B'a’ - 0)) -
(Ila: A.Ba) = (Ila’ : A’. B’ a’) — O

If we change the definition of the witness on universes to enrich the parametricity
translation, the other cases in the translation have more information about the
subterms, but they also have to propagate more information. Thus, if we redefine
the parametricity witness over universes as a pair (A — B — [) x (B — A)
containing a function, the property to be proved for an arrow type® then becomes
the following:

MAA :O)(Ag: (A— A = 0) x (4 — A)).
(BB :0)(Bg: (B— B — ) x (B — B)).
(A-B)—» (A —-B)—-0)x((A > B)—(A— B))

The left part of the pair to build on the arrow type — the relation — can be ob-
tained in the same way as for the raw translation. The right-hand side, however,
amounts to building a valuein A — B from the following three values:

ffiA - B P A > A Yp:B — B

Yet, we can see that the contravariance of the domain of the arrow type prevents
us from carrying out this proof. In fact, this proof would be feasible if the 14

function were in the other direction, i.e., a function ¢, of type A — A’. We
would build the expected function by taking a value in A, then applying in turn
¢4, [’ then g, toobtainavaluein B. Breaking the symmetry by only introduc-
ing a function in one direction requires us to orient the parametricity witnesses
and have a translation that handles two types of witness.

This situation is acceptable, although it complicates the parametricity transla-
tion. However, enrichment by a function poses another problem linked to de-
pendent types.” The example above deals with the arrow type, but the proof for

6: We first study the arrow type, then the
dependent product, to expose two different
problems appearing with the enrichment of
the witness by a function.

7: This problem would also exist when mak-
ing the witness symmetrical by enriching the
raw witness with a function in both direc-
tions.
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a dependent product is as follows:

T(AA : O)(Ap : (A= A - 0) x (4 = A)).
OB:A—0O)(B : A — D).
(I(a: A)(a’: A").Ag.lad’ = (Ba— B'a’ - 0) x (B'a’ = Ba)))
— (Ma: A.Ba) —» (lla’ : A’. B’ d/) — 0O)
X ((la’ : A’.B"a’) — (Ila: A. Ba))

Again, we focus on the right-hand side, where we need to build a value in the
dependent type Ila : A. B a from the following three values:

f/:lad : A.B'd
¢A :AI —>A
Yp:(a: A)(a’ : A’). Ag.laa’ = (B’a’ — Ba)

The contravariance certainly gives the wrong type for 14, but here we are inter-
ested in the type of 95, thatin the case of a dependent product, becomes depen-
dent on two values a and a’ as well as a parametricity witness between them.
We need to build a value of type Ila : A. Ba,i.e., avalue of type B a when in-
troducing avalue a : A into the context. However, even if we had a value of type
A’ tosupply as the second argument to 15, we would not be able to build a para-
metricity witness relating a and this value, since a is only a local variable about
which we have no other information. We therefore need to enrich the parame-
tericity witness type further, for example by linking the relation and the function.
The witness — or rather one of the oriented witnesses — becomes a dependent
pair with three values:

Y(R:A—-B—U)(¢: A— B).Il(a: A). Ra(¢a)

This new witness then provides a means of constructing the missing witness to in-
stantiate ¢z above and creating the function on the dependent products. How-
ever, as the parametricity witness has been enriched, we also need to prove the
last property on the dependent product, which also requires more information.
The univalent parametricity witness can be seen as the culmination of an iter-
ation on this problem. We obtain a witness that is both symmetrical and stable
through translation, i. e., that passes through all the constructions without chang-
ing its nature.

8.2.2 Type equivalence and univalence

At the heart of univalent parametricity lies the principle of univalence, defined us-
ing type equivalence, a widespread notion with many existing definitions. Here,
we explain the definitions chosen by TABAREAU et al., that form a basis for our
work: isomorphism, equivalence, univalence. These are classic definitions that
can be found in the Homotopy Type Theory book [64].

DEFINITION 8.2.1 (Isomorphism)
Afunction ¢ : A — B is an isomorphism, denoted Islso(®), if there exists
another function 4 thatis both a left-inverse and a right-inverse for ¢:

Islso(¢) = X(¢:B— A). (Y o =id) x (potp =1id)

[64]: Univalent Foundations Program (2013),
Homotopy Type Theory: Univalent Founda-
tions of Mathematics
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Note that type embeddings in TRAKT, introduced in § 6.1.1, are defined using an
isomorphism in the case of total embeddings.

DEFINITION 8.2.2 (Equivalence)
The addition of an adjunction property to an isomorphism ¢ : A — B gives
an equivalence, denoted IsEquiv(g) :

IsEquiv(¢) = X(¢¥:B— A)
(sec:p o ¢ = id)
(ret: ¢ o ¢ = id).
ap ¢ o sec = ret o ¢

where ap fp: fz=fyforp:z=y.

The adjunction property ties together the proofs of section and retraction by show-
ing that a proof of ¢ o 9 o ¢ = ¢ can be obtained by removing in the left-hand
member either the outer composition ¢ o % usingthe retraction property, or the
inner composition ¥ o ¢ using the section property.

Sometimes, it is possible to define the inverse function as well as the section and
retraction proofs, yet adjunction is hard to prove. In this case, there is a classic
method in HOTT to obtain an equivalence from an isomorphism.

LEMMA 8.2.3
An isomorphism is an equivalence.

DEFINITION 8.2.4 (Type equivalence)
We say that two types A and B are equivalent, denoted A ~ B, when there
exists an equivalence ¢ : A — B:

A~B = X¢:A— B.IsEquiv(¢)

Atype equivalence e : A ~ B thusincludes two transport functions, that we can
also denote 1,: A — B and |, : B — A. They can be used to perform proof
transfer from type A to type B, using 1, at covariant occurrences, and |, at

contravariant ones.? 8: This operation is similar to what happens
in TRAKT, where the role of transport func-
The univalence principle asserts that equivalent types are indistinguishable. tions is played by embedding functions.

DEFINITION 8.2.5 (Univalence principle)
For any two types A and B, the canonical map oftype A= B —+ A~ B is
an equivalence.

In variants of CC,,, the univalence principle can be postulated as an axiom, with
no explicit computational content, as done for instance in the HOTT library [65] [65]: BAUER et al. (2017), “The HoTT library:
for the CoQ proof assistant. Some more recent variants of dependent type theory @ formalization of homotopy type theory in
feature a built-in computational univalence principle, and are used to implement Coq
experimental proof assistants, such as CuBICAL AGDA. In both cases, the univa-
lence principle is a powerful proof transfer principle from [J to [, as for any
two types A and B suchthat A ~ B,and any P : [J — [, we can obtain that
P A ~ P B as adirect corollary of univalence.® Concretely, P B is obtained 9: For e : A ~ B and w a proof of the uni-
from P A by appropriately allocating the transport functions provided by the ~ valence principle applied to A and B, we
equivalence proofs, a transfer process typically useful in the context of proof en- have:

Tu (@p P(lye): PA~PB.
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gineering [66]. [66]: RINGER et al. (2021), “Proof repair across
type equivalences”

8.2.3 Univalent parametricity translation

The key observation of univalent parametricity is that it is possible to enrich para-
metricity witnesses while preserving the abstraction theorem (8.1.1). Indeed, a
raw parametricity witness links two types by an arbitrary relation, whereas uni-
valent parametricity requires that the relation be an equivalence between these
types. However, this enrichment requires a careful design in the translation of
universes.

DEFINITION 8.2.6
The relational interpretation of the universe in univalent parametricity is the
following:

Param; (AB: ;) := X(R:A—B-L)(e:A~B).
Il(a: A)(b: B).Rab=~ (a=|,b)

This type packages a relation R and an equivalence e such that R is equiva-
lent to the functional relation associated with |,. A crucial property of this new
translation is the following:

LEMMA 8.2.7

Under the univalence axiom, the interpretation of the universe in univa-
lent parametricity is equivalent to equivalence, i.e., there exists a term
ParamEquiv, such that

ParamEquiv, : II(A B : L;). Param; A B ~ (A =~ B).

Proof. Let A and B be two types. We have:

Param; A B
1 definition
Y(R:A—-B—0U,)(e: A~B).Il(a: A)(b: B).Rab=~(a=].b)

1 swapping mutually non-dependent binders

~ Ye:A~B)(R:A— B—01,).I(a: A)(b:B).Rab~(a=1|.b)
J univalence principle

~ MNe:A~B)(R:A— B—U,).II(a: A)(b: B).Rab=(a=..b)
J equality in point-free style

Y(e:A~B)(R:A— B—L,).R=Aa:A)b: B).(a=1.b)
J contractible type in the right-hand member of the dependent pair
A~B

R

This observation is actually an instance of a more general technique available

for constructing syntactic models of type theory [59]. In fact, enriching the para- [59]: BOULIER et al. (2017), “The next 700 syn-
metricity witness on the universe changes the structure of all the parametricity ~ facticalmodels of type theory”

witnesses on types, making them dependent pairs, unlike the raw translation

where they are relations. In this state, the translation is ill-formed and the ab-

straction theorem becomes invalid. In these models, a standard way to recover
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the abstraction theorem then consists in refining the translation into two vari-

ants, in order to handle correctly terms that are also types. Thus, the translation
of T': J; as aterm, denoted [T'],,, is indeed a dependent pair, that contains a

relation as well as the additional data prescribed by the interpretation of the uni-

verse Param,. The translation of T as a type, [T ],,, will be the relation itself,
i.e., the projection of the dependent pair [T'],, onto its first component. The full
univalent parametricity translation is therefore the following:

[O]u=0
[T,z:A],=[T],z: Az : A zgp:[A],zz

[Al. =[Al.1

[, ], == (Param, ; EqUiVDi ; Cohp))

[x]u =2Zp
Ry AB;
[Oz: A.B],:= | Equiv, AA'[A],BB [B],;
Coh; AA’[A],BB [B],
Xz A.t], = A A)e : &)z : [Al, 22).[2],
[fely=[Flutt [t],

The mostinteresting cases are the universe and the dependent product, the other
cases being similar to the raw translation. Being types, their translation is there-
fore a dependent triplet, the first component being a relation, the second a proof
of equivalence, and the last a proof of coherence between the two preceding
terms. The Ry relation has the same structure as in the raw translation, using
the univalent translation for the domain and the codomain:

RpAB = A f.T(z:A) (" : A)(zg:[A],z2").[Bl. (fz) (f 2')

Equivalence proofs — Equiv; and Equiv —and coherence proofs — Coh[,é
and Cohy — are available in the article [14].

We can now phrase the abstraction theorem for univalent parametricity, where
I, refersto a typing judgment assuming the univalence axiom:

THEOREM 8.2.8 (Abstraction theorem for univalent parametricity)
If TH¢t:T,then [T], Fy [tly : [T].tE-

We still note that in order to respect the abstraction theorem, the definition of
[OJ; ], uses the univalence principle in an essential way. Indeed, since the rela-
tion on the universe is Param;, we must have:

(Ol [[Di+1 J. 00,
ie. [0;], :Param,,, O, C;
The equivalence between a universe and itself, EquiVD', is trivial and uses iden-

tity as both transport functions. Thus, proving the coherence property CohE,i
amounts to proving that the relation is equivalent to equality over the universe,

Figure 8.2: Univalent parametricity transla-
tion for CC,,.

[14]: TABAREAU et al. (2021), “The marriage of
univalence and parametricity”
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ITAB: ;. Param; AB ~ (A = B).

The proof is based on Lemma 8.2.7 and definitely requires the univalence axiom.

8.2.4 Omnipresence of the univalence axiom

Let us take the following example of goal:
I(P:N—-0).P0O— PO

If we associate N with another type, for example a binary encoding N of natural
numbers, then the goal associated by parametricity will be as follows, where 0,
is the constant associated with 0:

(P’ : N —» 0). P’ 0y — P’ Oy

The univalent parametricity witness is built by induction on the syntax of the ini-
tial goal. During the traversal of this term, we are forced to translate [J, thus in-
voking the proof Cohp that requires the univalence axiom. However, we are in
a case in which the proof of implication between the two goals is feasible without
an axiom. The proof to be performed is as follows:

H :T(P':N—0).P0y—PO0y P:NoO py:PO
PO

The trivial proof p, is possible here, but the general proof valid for other goals is
the one using H’, by placing embedding functions in one direction or the other
according to the types to be inhabited. We then instantiate H’ with:

P :=P°J/N

If we define embedding functions that send the zero of one type to the zero of
the other, then the second argument of H’ can be p, unchanged. In this way,
we have a proof of implication between the two goals without using an axiom.
This case occurs as soon as an instance of [ is present in the initial goal without
being problematic for the development of a manual proof.



Type equivalence in kit

As explained in the previous chapter, parametricity provides a general framework
to link terms in a A-calculus, the most advanced example being univalent para-
metricity. This very powerful translation makes it possible, at the cost of adding
an axiom, to generate proofs of equivalence by induction on the syntax, from any
term in CC,,. By adding constants to the calculus, it is possible to implement a
toolin which the user can add heterogeneous parametricity witnesses, i. e., equiv-
alences between different types, before the start of the translation, allowing the
generation of equivalences between different goals and thus proof transfer.

However, the need to add the univalence axiom to the calculus is an issue for
two reasons. Firstly, as shown in § 8.2.4, many goals could be preprocessed with
the same result as a univalent parametricity translation, but without using the
univalence axiom, whereas univalent parametricity makes systematic use of it.
Secondly, with the pragmatic aim of implementing a new parametricity plugin to
ease proof transfer in CoQ, it is necessary to ensure that the design space of the
parametricity translation is logically consistent with the underlying logical theory
of the proof assistant. Yet, the univalence axiom might introduce incompatibili-
ties with the standard version of CoQ.!

This chapter therefore presents a new parametricity relation, based on a new for-
mulation of type equivalence (§ 9.1) that exposes all the information in a symmet-
rical and atomic way, as opposed to the classic formulation presented in Defini-
tion 8.2.4. The particularity of parametricity witnesses in this framework is that
they contain a variable amount of information, ranging from the raw parametric-
ity witness in the weakest case to the univalent witness in the strongest case. As
a result, there is not a single stratified parametricity translation, but a set of pos-
sible associations (§ 9.2), the aim being to modulate the size of the parametricity
witness and avoid depending on the univalence axiom when it is possible.

9.1 A new formulation of type equivalence

As shown previously, Definition 8.2.6 describes a univalent parametricity witness
both very rich — it systematically requires equivalence — and very dense — it con-
tains only three values. As a result, the coherence condition in the case of the uni-
verse requires the definition of the witness to be equivalent to equality between
types, which forces the translation to resort to the univalence axiom systemati-
cally. However, some goals contain occurrences of [ for which it is excessive to
require equivalence in order to perform preprocessing.

Thesituation suggests to search for a hybrid parametricity relation, needing equiv-
alence only in cases where it is strictly necessary, and requiring less information

where possible. This involves a decomposition of type equivalence (§9.1.1), i.e.,
spreading out the information it contains. Once the decomposition is done, it

is possible to carve a hierarchy of parametricity witnesses by selectively picking

values from this X-type (§ 9.1.2).

9.1 Anew formulation of type

equivalence .......... 82
9.1.1 Decomposing equivalence . . 83
9.1.2 Hierarchical recomposition of

parametricity witnesses . . . . 86

9.2 Populating the hierarchy of

relations ............ 87
9.2.1 Translation of universes . . . . 87
9.2.2 Translation of dependent

products . . .......... 88
9.2.3 The case of non-dependent

products . . .......... 89

1: One generally uses it in the HoTT li-
brary [65]in order to workin a fully controlled
context.



9.1.1 Decomposing equivalence

Let us first observe that the Definition 8.2.4 of type equivalence is quite asym-
metrical, although this fact is somehow put under the rug by the infix A ~ B
notation. Indeed, first, the data of an equivalence e : A ~ B privilege the left-
to-right direction, as 1, is directly accessible from e asits first projection, while
accessing the right-to-left transport requires an additional projection. Second,
the statement of the adjunction property, available in Definition 8.2.2, is:

ap ¢ o sec = ret o ¢

This statement uses proofs sec and ret, respectively the section and retraction
properties of e, but not in a symmetrical way, although swapping them provides
an equivalent definition. This entanglement prevents any hope to trace the re-
spective roles of each transport function during the course of a given univalent
parametricity translation. Exercise 4.2 in the HoTT book [64] however suggests a
symmetrical wording of the definition of type equivalence, in terms of functional
relations.

DEFINITION 9.1.1
Anyrelation R : A — B — [J; is functionalwhen each value of A isuniquely
linked to exactly one value of B in R:

IsFun(R) := Tla:A.IsContr(Xb: B.Rab)
where IsContr(-) is the standard contractibility predicate:

IsContr(T) := Xtp:T.It:T.t=t1,

We can now obtain an equivalent but symmetrical characterisation of type equiv-
alence, as a functional relation whose symmetrisation is also functional.

LEMMA 9.1.2
Forany types A, B : [J,, thetype A ~ B is equivalent to:

YR:A— B— [;.IsFun(R) x IsFun(R™1)

where relation R~! : B — A — [J; just swaps the arguments of an arbitrary
R:A— B0,

Let us sketch a proof of this result, left as an exercise in [64].

We need the following lemma, that explains why IsFun(-) characterises func-
tional relations:

LEMMA 9.1.3
For any types A, B : [];, we have:

(A—->B) ~ ¥R:A— B— U, IsFun(R).
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[64]: Univalent Foundations Program (2013),
Homotopy Type Theory: Univalent Founda-
tions of Mathematics



Proof. The proof goes by chaining the following equivalences:

YR: A — B — [],.IsFun(R)
J definition
¥R:A— B—[,.Ila: A.IsContr(Xb: B.Rab)
J swapping mutually non-dependent binders
Ila: A XR: A— B — ;. IsContr(Xb: B.Rab)
J by defining P := R a, the first binder is no longer dependent
A — ¥P: B — [,.I1sContr(Xb : B. Pb)
J standard HoTT lemma
A— B

R

R

1

Proof of Lemma 9.1.2. The proofis done by chaining the following equivalences:

A~B
J definition

Xf: A— B.IsEquiv(f)
J classic result of HoTT

Yf:A— B.IIb: B.IsContr(Xa: A. fa =1b)
4 definition of IsFun(-)

YXf:A— B.IsFun(A(b: B)(a: A). fa=0b)
J Lemma9.1.3

3(f:E(R:A— B— ). IsFun(R)). IsFun(f.171)
J associativity of &

YR:A— B — [J,.IsFun(R) x IsFun(R™1)

R

R

R

R

R

The symmetrical version of type equivalence provided by Lemma 9.1.2 however
does not expose explicitly the two transport functions in its data, although this
computational content can be extracted via projections on contractibility proofs.
In fact, it is possible to devise a definition of type equivalence that directly pro-
vides the two transport functions in its data, while remaining symmetrical. The
essential ingredient of this rewording is the alternative characterisation of func-
tional relations.

DEFINITION 9.1.4

For any types A, B : [J;, arelation R : A — B — L[], is a univalent map,
denoted IsUMap(R), when there exists a function m whose graph is exactly
described by R, and this very property comes with a coherence condition:

IsUMap(R) := X(m:A— B)
(my :(a: A)(b: B).ma=b— Rab)
(mg : II(a: A)(b: B).Rab— ma="b).
H(a: A)(b: B).(ryab)o (ryab) =id

Now comes the crux lemma of this subsection, formally proved in the code of
TROCQ:

9 Type equivalence in kit
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LEMMA 9.1.5
For any types A, B : [J, and any relation R: A — B — [,

IsFun(R) =~ IsUMap(R).

Proof. The proof goes by rewording the left hand side step by step:

IsFun(R)
1 definitions
o~ Tlag.X(c:Xb.Rayb).Il(p: Xb. Ragb).c=p
1 associativity of &
~ Ilag.Xby. 2r: Ragby. II(p: Xb. Ragb). (by; 7) =p
1 intuitionistic choice
~ XN¢:A— B.Ilay.Xr: Ragy(dpay).II(p: Xb. Ragd). (pay; ) =p
J swapping of binders and abstraction of a, in r

Y¢.X(r : lla. Ra (pa))-llag.Il(p : £b. Rag b). (Pag; rag) =p
1 splitting p
Yé. Xr. lag. by II(7" : Rag by). (dag; rag) = (b5 )
] decomposition of the equality proof over a dependent pair
Y. Xr.Iay. by IIr’ . Xe : pag = by. 7 ag =, 7’
J swapping of binders and abstraction of ag, by, and 7’ in e
Y¢.Xr.X(e: Ha.Ilb. Rab — ¢ a = b).Ilay. Iby. IIr' . 7 =

R

R

T,

R

eag by 1’

We identify that ¢ isvalue m in the definition of IsUMap(R), and e isvalue .
By renaming values and reorganising X-types, we are left to show the following
property:

X(my : Da. Ib.ma =b — Rab). (1 agby) o (my ag by) = id

~ X(r:lla.Ra(ma)).Il(r" : Ragby).T g =, oy 5, T’

We refer the reader to the companion code. |

As a direct corollary, we obtain a novel characterisation of type equivalence:

THEOREM 9.1.6
For any types A, B : [1, we have:

(A~ B) ~Param' AB
where relation Param' A B is defined as:

Param' AB := XR:A— B—[.
IsUMap(R) x IsUMap(R™1)

Theresulting collection of data is now symmetrical, as the reverse direction of the
equivalence based on univalent maps can be obtained by flipping the relation
and swapping the two functionality proofs. If the 5 rule for records is verified,
symmetry is even definitionally involutive.

9 Type equivalence in kit
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9.1.2 Hierarchical recomposition of parametricity witnesses

Definition 9.1.4 of univalent maps and the resulting rephrasing of type equiva-
lence suggest introducing a hierarchy of structures for heterogeneous relations,
that explains how close a given relation is to type equivalence. In turn, this dis-
tance is described in terms of structure available respectively on the left-to-right
and right-to-left transport functions.

DEFINITION 9.1.7
For n,k € {0,1,2,,2;,3,4},and a = (n, k), relation Param® is:

Param® := \(AB:0).
YR:A— B —[.Class, R

where the map class Class,, R itself unfolds to a pair type of two unilateral
witnesses — one from A to B,onefrom B to A:

(M, ABR) x (M, BAR™)

with M; defined as:

M¢ABR =
M,ABR = A—B
My, ABR = Tm:A—B.G, ABmR
My ABR = Sm:A—B.Gy ABmR
MgABR := X(m:A— B).
(Gy, ABm R) x (Goy ABm R)
MyABR := X(m:A— B)
(9. Go, ABmR)
(9 : Gy, ABmR).
Ilab. (g, ab) o (g, ab) = id
with
Gy, ABmR := Il(a:A)(b:B).ma=b— Rab
Gy, ABmR = I(a:A)(b:B).Rab—ma=5b

Foranytypes A and B,andany r : Param® A B, we will use notations rel(r),
map(r) and comap(r) to refer respectively to the relation, function of type
A — B, function of type B — A, included in the data of r, for a suitable «.

DEFINITION 9.1.8

We denote A the set {0,1,2,,2,3,4}2, used to index map classes in
Definition 9.1.7. This set is partially ordered for the product order on
{0,1,2,,2;,3,4} defined from the partial order 0 < 1 < 2, < 3 < 4 for
2, either 2, or 2, and with 2, and 2; beingincomparable.

REMARK 9.1.9
Relation Param of Definition 9.1.7 coincides with the relation Param ' in-
troduced in Theorem 9.1.6, equivalent to the univalent parametricity witness

(4:4)
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type. Similarly, we denote as Param™ the relation Param(o’o), that amounts
to just having a relation R : A — B — [ as in the raw parametricity
translation. A relation equipped with structure Param®?® A B (respectively
Param®® A B ) is the graph of a univalent map from A to B (respectively
an isomorphism between A and B).

In the associated code, the corresponding lattice to the collection of M,, isim-
plemented as a hierarchy of dependent tuples — more precisely, of record types.
Each arrow of Figure 9.1 represents an inclusion of the data packed in the source
structure into the data packed in the target one. Moreover, nodes are labeled
with the names of the corresponding record fields introduced by the richer struc-
ture.

map_in_R

»

& O

Figure 9.1: Implementation of the hierarchy
of Definition 9.1.7

9.2 Populating the hierarchy of relations

We shall now revisit the parametricity translations of § 8. In particular, combining
Theorem 9.1.6 with the abstraction theorem for univalent parametricity ensures
the existence of a term p, such that:

b PO, P.zuramiT+1 0;0; and rel(pn,) ~ ParamiT.

Otherwise said, relation Param' : 0 — O — O can be endowed with a
Param' structure, assuming univalence. Similarly, the equation for universes,
in Figure 8.1 describing the raw parametricity translation, can be read as the fact
that relation Param™ on universes can be endowed with a Param™ (0 O struc-
ture.

9.2.1 Translation of universes

Now the hierarchy of structures introduced by Definition 9.1.7 enables a finer
grained analysis of the possible relational interpretations of universes. Not only
would this put the raw and univalent parametricity translations under the same
hood, but it would also allow for generalising parametricity to a larger class of
relations. For this purpose, we generalise the previous observation, on the key
ingredient for translating universes: for each o € A, relation Param® may be
endowed with several structures from the lattice, and we need to study which
ones, dependingon a. Otherwise said, we need to identify the pairs (a, 8) € A2
for which it is possible to construct a term p%’ﬂ such that:

Fo p"D”s : Param”’ 00  and rel(pg’ﬁ) = Param” (9.1)
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Note that here we aim at a definitional equality between rel(p‘é’ﬂ) and Param?,
ratherthan an equivalence. Itis easy to see thataterm p‘é’l existsforany a € A,
as Param™ requires no structure on the relation. On the other hand, it is not
possible to construct a term pE’T, i.e., to turn an arbitrary relation into a type
equivalence.

DEFINITION 9.2.1
We denote as D the following subset of A2 :

D ={(a,8) € A?|a=TVEe{0,1,2,}°}

The associated code 2 constructs terms p%’ﬂ for every pair (e, 8) € D, using 2: File Param_Type.v.
a meta-program to generate them from a minimal collection of manual defini-
tions. In particular, assuming univalence, it is possible to construct a term pE’T,
that can be seen as an analogue of the translation [[]] of univalent parametric-
ity. More generally, the provided terms p‘é’ﬂ depend on univalence if and only if

B ¢{0,1,2,}%

9.2.2 Translation of dependent products

The next natural question is the study of the possible structures Param” that
can equip a relation associated with a product type IIz : A. B, when the rela-
tions associated with types A and B are respectively equipped with structures

Param® and Param®.

Otherwise said, we need to identify the triples (a, 8,7) € A3 for which it is
possible to construct a term pf; such that:

'+ Ap : Param® A A’
To:Az' : A,xp: Agxa’ - By : Param” B B/
T+ p) Ag By : Param” (Ilz : A. B) (Iz’ : A’. B)

rellpfy AR Bg) = M f.U(z: A)(a’ : A')(zg : rel(Ag) z 7).
rel(Bg) (f 2) (f2')

The corresponding collection of triples can actually be described as a function
Dy = A — A2, such that D(v) = (a, ) provides the minimal requirements
on the structures associated with A and B, with respect to the partial order on
A2. The associated code * provides a corresponding collection of terms pﬂ for 3: File Param_forall.v.
each v € A, as well as all the associated weakenings. Once again, these defini-
tions are generated by a meta-program. Observe in particular that by symmetry,
p%"’“) can be obtained from pg"’o) and pgl’o) by swapping the latter and glue-
ing it to the former. Therefore, the values of pf; and Dy (v) are completely de-

termined by those of pﬂ"’o) and Dy (m,0). In particular, forany m,n € A:

Dp(m,n) = ((ma,n4), (mp;np))

for my,ny, mp,ng € A defined as

Dy(m,0) = ((OvnA)a (mBaO))
Dy(n,0) = ((Oa my), (nB’O))

We sum up in Figure 9.2 the values of Dy (m,0).* 4: The greyed-out cells highlight a weaker
dependencyin the case of an arrow type com-
pared with the general case of the dependent
product.



m | Dy(m,0); | Dy(m,0), m | D,(m,0);, | D_,(m,0),
0 (V) (0,0 0 (0,0) (0,0
1 (0,2,) (1,0) 1 (0,1) (1,0)
23 (0’ 4) (za’ 0) 2a (Ov 2b) (Zav 0)
2b (Oa 2a) (2ba 0) 2b (07 2a) (2ba 0)
3 (0,4) (3,0) 3 (0,3) (3,0)
4 (0,4) (4,0 4 (0,4) (4,0)

9.2.3 The case of non-dependent products

Note that in the case of a non-dependent product, constructing pZ, requires less
structure on the domain A of an arrow type A — B, which motivates the in-
troduction of function 2_, (). Using the combinator for dependent products to
interpret an arrow type, albeit correct, potentially pulls in unnecessary structure
— and axiom — requirements. The associated code ° includes a construction of
terms pZ, forany v € A.
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Figure 9.2: Minimal dependencies for depen-
dent and non-dependent products at class
(m,0)

5: File Param_arrow.v.



A calculus for proof transfer

This chapter introduces TRocQ, a framework for proof transfer designed as a gen-
eralisation of parametricity translations, so as to allow for interpreting types as
instances of the structures introduced in § 9.2.1. We adopt a sequent style pre-
sentation, that closely fits the type system of CC,,, while explaining in a consis-
tent way the transformations of terms and contexts. This choice of presentation
departs from the standard literature about parametricity in Pure Type Systems.
Yet, it brings the presentation closer to actual implementations, whose neces-
sary management of parametricity contexts is put under the rug by notational
conventions.

For this purpose, we successively introduce four calculi, of increasing sophisti-
cation. We start with introducing this sequent style presentation by rephrasing
the raw parametricity translation (§ 10.1), and the univalent parametricity one
(8 10.2). We then introduce CCJ , a calculus of constructions with annotations
on sorts and subtyping (§ 10.3), before defining the TRocQ calculus (§ 10.4).

10.1 Raw parametricity sequents

We introduce parametricity contexts, under the form of a list of triples packaging
pairs of variables together with a witness that they are related:

Sx=c|8 o ~ & vay

We write (z,z’,zg) € E if there exists =’ and E” such that:

/ =

g B ™ G T @, B

[1]

[1]

Wedenote Var(Z) the sequence of variables related in a parametricity context Z:

Var(e) =e¢  Var(g, z ~ &’ ~zp) = Var(8),z,2', x5

A parametricity context = is well formed, written E I, if the sequence Var(E) is
duplicate-free. In this case, we use the notation Z(z) = (2’,2g) as asynonym
of (z,z’,zg) € E.

A parametricity judgment relates a parametricity context = and three terms M,

M’, My of CC,,. Parametricity judgments are defined by rules of Figure 10.1.
We denote and read them in the following way:

EFM ~ M = Mg

In context =, term M translates to term M’, because My, .

LEMMA 10.1.1
The relation associating a term M with pair (M, My) such that

EbM ~ M = Mg

10
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(PARAMSORT)

Er0; ~0,vXAB:0;).A—»B—

z,z’/,xg) EE El
(@,2',25) (PARAMVAR)

BlF® ~ & %@y

E-M ~ M <My EFN ~ N'=Ng
(PARAMAPP)
E-FMN ~ M'N’+MpN N’ Ng

E,x ~a' vzpb M~ M Mg
EFAr:AM ~ Xz’ : A/ M v dea’ zg. My

(PARAMLAM)

ERA~ A Ap
Exz~z' vzp-B~ B B z,x’ ¢ Var(E
2 R R @’ £ Var() (PARAMPI)

) . ~ /. A /.. ’ ’
Etrlz:A.B Ha’: A'. B = Af g.llzz Dy BR (-f x) (gw ) Figure 10.1: PARAM: sequent-style binary
parametricity translation

with E a well-formed parametricity context, is functional: for any term M
and any well-formed =:

VYM’,N’, Mg, Ng,
E-M~M Mg ANEFM ~ N +Np =
(MlvMR) = (NI,NR)

Proof. Immediate by induction on the syntax of M. |

This presentation of parametricity thus provides an alternative definition of trans-
lation [- ], from Figure 8.1, and accounts for the prime-based notational conven-
tion used in the latter.

DEFINITION 10.1.2

A parametricity context = is admissible for a well-formed typing context T,
denoted I' > E, when E is well formed as a parametricity context and T" pro-
vides consistent type annotations for all terms in E, that is, for any variables
z,z’,zp suchthat E(x) = (2’,x5), and forany terms A’ and Ap:

EFD(z) ~ A'+Ap = TI(z')=A" AT(zg)=Agza’

We can now state and prove an abstraction theorem:

THEOREM 10.1.3 (Abstraction theorem)

TH
TFM:A T>E EFM~M- My BrFA~A-A,
THM':A and TFMg:AgMM

Proof. By induction on the derivation of = M ~ M’ = Mpg. n
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10.2 Univalent parametricity sequents

We now propose in Figure 10.2 a rephrased version of the univalent parametric-

ity translation [14], using the same sequent style and replacing the translation [14]: TABAREAU et al. (2021), “The marriage of
of universes with the equivalent relation Param . In this variant, parametricity ~ Univalence and parametricity”
judgments are denoted in the following way, where E is a parametricity context

and M, M’,and Mz are terms of CC,;:

Bk, M ~ M = Mg

The u index is a reminder that typing judgments I" I, M : A involved in the
associated abstraction theorem are typing judgments of CC,, augmented with
the univalence axiom.

UPARAMSORT)
= 77 (
2k, O, ~ O vpf

% o) B BlF
(@2, 25) (UPARAMVAR)

= 7 o
Eb,z ~ a2’ ~vzp

Eb, M ~ M =M Ety, N ~ N =N
C & > 2 (UPARAMAPP)
EF, MN ~ M’ N’ <Mz NN’ N,

EF, A~ A A Zx~z' vzpk, M~ M <«M
= B R _w £ (UPARAMLAM)

EFy, Az A M ~ X’ : A/ M~ Xxa’ xp Mg

EF, A~ A A E,x~z vzpt, B~ B =B
o R ’ B u B (UParAMPI)

Eb,z:AB~Tlz': A. B ~p; Ap B
L ~ P 4R PR Figure 10.2: UPARAM: univalent parametricity
rules

We can now rephrase the abstraction theorem for univalent parametricity.

THEOREM 10.2.1 (Univalent abstraction theorem)

TH
TFM:A TpE EF,M~M-:Mg Eb,A~A=Ag
THM':A and Ek, Mg:rel(Ag) M M’

Proof. By induction on the derivationof Et+,, M ~ M’ = Mp. |
REMARK 10.2.2

In Theorem 10.2.1, term rel(Ag) is a relation of type A — A’ — L. Indeed:

r-A:00, =Et+,A~A~Ap T'D>E
'k, Ag: rel(pg’T)AA'

entails Ap hastype

rel(pl ) A A
Param' A A’
YR:A— A’ = [.IsUMap(R) x IsUMap(R™1)
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10.3 Annotated type theory

We are now ready to generalise the relational interpretation of types provided by
the univalent parametricity translation, so as to allow for interpreting sorts with
instances of weaker structures than equivalence. For this purpose, we introduce
avariant CC} of CC,, where each universe is annotated with a label indicating
the structure available on its relational interpretation. Recall from § 9.2.1 that we
have used pairs « € .42 to identify the different structures of the lattice disas-
sembling type equivalence: these are the labels annotating sorts of CC, so that
if A hastype (1%, then the associated relation Ap hastype Param® A A’. The
syntax of CC} is thus:

M,N,A,B€T¢gcs =07 |z|MN | z: A M|llz: A.B
aeA=1{0,1,2,2,3,42 ieN

Before completing the actual formal definition of the TRocQ proof transfer frame-
work, let us informally illustrate how these annotations shall drive the interpreta-
tion of terms, and in particular, of a dependent product Ilz : A. B. In this case,
before translating B, three terms representing the bound variable z, its transla-
tion z’, and the parametricity witness zp are added to the context. The type
of zp is rel(Ag) z ' where Ay is the parametricity witness relating A to its
translation A’. The role of annotation a on the sort of type A is thus to govern
the amount of information available in witness zp, by determining the type of
Ap. Thisintent is reflected in the typing rules of CCJ , that rely on the definition
of the loci D, D_, and Dy, introduced in § 9.2.

Typing terms in CC} requires defining a subtyping relation =, defined by the
rules of Figure 10.3. The typing rules of CC;} are available in Figure 10.4 and fol-
low standard presentations [67]. The = relation in the SuBCoNv rule is the con-
version relation, defined as the closure of a-equivalence and S-reduction on this
variant of A-calculus. We hence have two types of judgment in this calculus:

'L AXB and TH, M:A
where M, A,and B aretermsin CCJ and T isa contextin CC} .

'+, A:K T+,B:K A=B
T, AXB

(SusConv)

> ; ', M'N:K ', MM
@2p ¢ (SUBSORT) + m

<j
T+, Of <08 T, MNSXM'N

(SuBAPP)

T,z: A, MM
TH Az:AMSAz: A M

(SusLAM)

I+, Mz:AB:0] Tr,A<A T,z:AF B<B
', Ilzx: AB<Iz: A".B

(SusPi)

K = DZlH:I}AK

[67]: ASPINALL et al. (2001), “Subtyping de-
pendent types”

1. T &= ¢|T, z: A

Figure 10.3: Subtyping rules for CC}
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T+, M:A T+, ,A<B ,B) €D
b + ) (CONV+) (a,B) O

', M:B T, Og:0f,

(SorT™)

(z,A)el’ Tk, (Var*) L A:07  z¢Var(l)
'k, z:A Iz:AkR,

(CoNTEXT ™)

', M:Tiz:AB Tk, N:A

(Appt)
TH, MN: Bz :=N]

Le:AF,  M:B
FE Az:A.M:Ilx: A.B

(Lam )

Tk A:0f Tk, B:0f 2,0 =@8) (yeowt)
T+, A—»B:00

TH,A:0f T,2:4k,B:00  Dy(y) = (oh)
I‘I—+Ha::A.B:DZ

(P17)

10.4 The TrocQ calculus

The final stage of the announced generalisation consists in building an analogue
to the parametricity translations available in pure type systems, but for the an-
notated type theory of § 10.3. This analogue is geared towards proof transfer,
and therefore designed to synthesise the output of the translation from its input,
rather than to check that certain pairs of terms are in relation. However, split-
ting up the interpretation of universes into a lattice of possible relation structures
means that the source term of the translation is not enough to characterise the
desired output: the translation needs to be informed with some extra informa-
tion about the expected outcome of the translation. In the TRocQ calculus, this
extra information is a type of CCJ.

We thus define TROCQ contexts as lists of quadruples:

A::=5|A,z@A~x"-'z'R WhereAGchcx

We also introduce a conversion function « from TrocQ contexts to CC}} con-
texts:

5

V(e)
YA, QA ~ 2’ vxp) = v(A),z:A

Now, a TROCQ judgment is a 4-ary relation, denoted and read in the following
way:

A, M@A ~ M = Mp

In context A, term M of annotated type A translates to M’, because Mpg.

TrRocCQ judgments are defined by the rules of Figure 10.5. This definition involves
a weakening function for parametricity witnesses, defined as follows.

Figure 10.4: Typing rules for CC}

94
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(o, 8) € D

Ar Oz@Of, ~ Og - p3P

(TROCQSORT)

($, A, xl7xR) € A ’Y(A) |_+
Ab,zQA ~ g’ wxp

(TROCQVAR)

A, MQIIz: A.B ~ M’ Mp AF, NQA ~ N’ = Np
(TROCQAPP)
A, MNQ@QB[z:=N]| ~ M’ N +MgzN N’ Ng

AR, AQO¢ ~ A< Ap  AzQA ~2' vz, MQB ~ M+ M

Abde: AMQIIz: A.B ~ Mg’ : A/ M’ ~ dxa’ xp. My

A, AQO® ~ A'+Ap, AW, B@F ~ BBy (o,8)=D,(05)

Ar, A—-B@[¥ ~ A’ — B = p’, Ap Bp

A, AQO2 ~ A+ Ap
A,z@QA ~ g’ vzpt, BQ¥ ~ B vBg  (a,f) = Dy(5)
Ab,Tz: A.BQIY ~ Iz’ : A’. B’ = p¥ Ap Br

(TROCQPI)

AR, M@A ~ M =My ~4(A)F, A<
A+, MQ@B ~ M’ = A Mg,

B
(TROCQCONV)

Og
HD;" tri=4a tr Uifﬂjw Np = Uj' M M’ Ng
Az:A.B , . Blz:=M]
U)\av:A’.B’ B A i = UB’[Z::M'] R

IIz:A. B B A 4
llHac:A'.B' Mp =Mz’ op. UB, (Mpza’ (HA 39)) UAz Mg = Mp

DEFINITION 10.4.1

Forall p,g € {0,1,2,,2;,3,4}, such that p > g, we define the unilateral
weakening map |5: M,, — M, to be the function forgetting the fields from
M, that are notin M,. Forall @, 8 € A, suchthat & > B, function |1

weakening a Param® A B to a Param® A B is defined by:

W (R (M2,M9)) = (R; (I M™, 12 M©)).
The weakening function on parametricity witnesses is defined in Figure 10.6
by extending function |l§ to all relevant pairs of types of CCf ie, T is
defined for T, U € T ¢y assoonas T U.

An associated abstraction theorem relates well-formed TRocQ judgments and typ-
ingin CC} :

B (TrocqLam)

(TROCQARROW)

Figure 10.5: TROCQ rules

Figure 10.6: Weakening of parametricity wit-
nesses
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THEOREM 10.4.2 (TROCQ abstraction theorem)
YAk, (AL M:A
AL MQA ~ M’ =~ Mg Ab, AQOY ~ A’ Ap
Y(A) L M A and Y(A) b, Mg : rel(Ag) M M’

Proof. By induction on derivation A, M @A ~ M’ Mp. [ |

Note that type A in the typing hypothesis v(A) -, M : A of the abstraction
theorem is exactly the extra information passed to the translation. The latter can
thus also be seen as aninference algorithm, that infers annotations for the output
of the translation from that of the input.

REMARK 10.4.3
Since by definition of p%’ﬂ (Equation 9.1), we have -, (1*@ 18 ~ [ -.-paD’ﬂ,
by applying Theorem 10.4.2 with y(A) F, A : [I%, we get:

YA F, A: 0 AR, AQO* ~ A+ Ap
Y(A) b, Ag : rel(pP) A A/ i

Now by the same definition, for any 8 € A, reI(pE’ﬁ) = Param?, hence
¥(A) - Ap : Param® A A’, as expected by the type annotation A : [J in
the input of the translation.

REMARK 10.4.4
By applying Remark 10.4.3 with -, (0% : (I8, we get:

F, p%’ﬂ : Param® 02 (02

as expected, provided that (a, 8) € Dp.

10.5 Constants

Concrete applications require extending TRocQ with constants. Constants are
similar to variables, except that they are stored in a global context instead of a
typing context. A crucial difference though is that a constant may be assigned
several different annotated types in CC} . Consider for example, a constant list,
standing for the type of polymorphic lists. As list A is the type of lists with ele-
ments of type A, it can be annotated with type [1* — [1* forany a € A.

Every constant ¢ declared in the global environment has an associated collec-
tion of possible annotated types T, C T g¢y. We require that all the possible
annotated types of a same constant share the same erasure? in CC,, i. e.:

Ve,VA,VB, A,BeT, = |A| =|B|”

For example, T}, = {0* — 0% |« € A}

In addition, we provide translations 2D_(A) for each possible annotated type A
of each constant ¢ in the global context. For example, D}, (010 — [1(1:0)) s
well defined and equal to the following translation:

(list, AAA’Ag. (List.All2 Ag; List.map map(Ap)))

2: It is a function |-|” defined as the re-
cursive withdrawal of all annotations on uni-
verses.
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where List.All2 Ay relatesliststhatarerelated by Ap element-wise, List.map
is the standard map function on lists and map(Ag) : A — A’ extracts the func-
tion from witness Ap of type Param™®” A A’ = £R. A — A’. Part of these
translations can be generated automatically by weakening.

We describe in Figure 10.7 the additional rules for constants in CC} and TrocQ.
Note that for an input term featuring constants, an unfortunate choice of annota-
tion may lead to a stuck translation.

€EC Ae€eT, D, (A) = (¢,
c c (CONST+) c( ) (C CR)
F'kFec:A AFcQA ~ ' ~cp

(TROCQCONST)

Figure 10.7: Additional constant rules for
CC} and TRoCQ



Conclusion and perspectives

The functionalities of the prototype plugin presented in this part Il can be ex-
tended in several directions. It would be particularly fruitful to connect it with
tools able to automate the generation of equivalence proofs, such as PUMPKIN
Pi [68]. Other improvements, e.g., addressing the case of CoQ’s impredicative
sort, involve non-trivial implementation issues, related to CoQ’s management of
universe polymorphism. We now discuss how the current state of this prototype
compares with other implemented approaches to proof transfer in interactive
theorem proving, listed in chronological order in the summary Table 11.1. For
each such tool, the table indicates whether a given feature is available (green),
not available (dark orange) or only partially available (yellow).

In the context of type theory, the idea that the computational content of type
isomorphisms can be used for proof transfer already appears in [69]. The first
implementation report of a tool based on this idea appeared soon after [70]. Im-
plemented in a meta-language and based on proof rewriting, this heuristic trans-
lation was producing a candidate proof term from a given proof term, with no for-
mal guarantee, not even that of being well typed. Generalised rewriting [43], that
generalises setoid rewriting to preorders, is also a variant of proof transfer, albeit
within the same type. As such, itallows in particular rewriting under binders. The
restriction to homogeneous relations however excludes applications to quasi par-
tial equivalence relations (QPER) [71], or to data type representation change.

The other proof transfer methods we are aware of all address the case of het-
erogeneous relations. Incidentally, they can thus also be used for the homoge-
neous case, although this special case is seldom emphasised. The CoQ EFFEC-
TIVE ALGEBRA LIBRARY (COQEAL) [45, 72] and the ISABELLE/HOL TRANSFER [73-76]
packages pioneered the use of parametricity-based methods for proof transfer,
motivated by the refinement of proof-oriented data-structures to computation-
oriented counterparts. Together with a subsequent generalisation of the COQEAL
approach [77], these tools address the case of a transfer between a subtype of a
certain type A and a quotient of a certain type B, i.e., the case of trivial QPER in
which the zig-zag morphism is a partial surjection from A to B.

The next two columns of the table concern proof transfer in presence of the uni-
valence principle, either axiomatic in the case of univalent parametricity [14], or
computationalinthe case of [78]. Key ingredients of univalent parametricity were
already present in earlier seemingly unpublished work [79], implemented using
an outdated ancestor of the METACOQ library [46].

Table 11.1 indicates which tools can transfer along heterogeneous relations, as
thisis a prerequisite to changing type representation, and which ones operate by
proving an internal implication lemma, as opposed to a monolithic translation
of an input proof term. We borrow the terminology used in [14], in which antic-
ipation refers to the need to define a dedicated structure for the signature to be
transported. Binders can prevent transfer, as well as dependent types. The latter
are recovered in presence of univalence. The first published publication [80] on
the univalent parametricity translation suggested that the translation does not
pull the axiom in when translating terms in the F“ fragment. However, TROCQ
can getrid of it for a strictly larger class of terms. Finally, the table indicates which

11

[68]: RINGER et al. (2021), “Proof repair across
type equivalences”

[69]: BARTHE et al. (2001), “Type Isomor-
phisms and Proof Reuse in Dependent Type
Theory”

[70]: MAGAUD (2003), “Changing Data Repre-
sentation within the Coq System”

[71]: KRISHNASWAMI et al. (2013), “Internal-
izing Relational Parametricity in the Exten-
sional Calculus of Constructions”

[73]: LAMMICH (2013), “Automatic Data Refine-
ment”

[74]: HAFTMANN et al. (2013), “Data Refine-
ment in Isabelle/HOL”

[75]: HUFFMAN et al. (2013), “Lifting and Trans-
fer: A Modular Design for Quotients in Is-
abelle/HOL”

[76]: LAMMICH et al. (2019), “Automatic Refine-
ment to Efficient Data Structures: A Compari-
son of Two Approaches”

[77]: ZIMMERMANN et al. (2015), “Automatic
and Transparent Transfer of Theorems along
Isomorphisms in the Coq Proof Assistant”

[78]: ANGIULI et al. (2021), “Internalizing rep-
resentation independence with univalence”

[79]: ANAND et al. (2017), Revisiting Para-
metricity: Inductives and Uniformity of Propo-
sitions

[80]: TABAREAU et al. (2018), “Equivalences
for free: univalent parametricity for effective
transport”
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Figure 11.1: Comparison of proof transfer au-
tomation devices

approaches can deal with quasi-equivalence relations (QER), and with (explicit)
subtyping relations.

In its current state, the TRocQ plugin can already address the proof transfer bu-

reaucracy of state-of-the-art formal proofs, in the context of abstract mathemat-

ics, programme verification, or both [81]. We expect that our work, once put in [81]: ALLAMIGEON et al. (2023), “A Formal Dis-
production, makes it possible to have the same lemma applicable to a wide va- ~ proofof Hirsch Conjecture”
riety of different types: isomorphic types, subtypes, and quotient types. This

framework moreover opens the way to a broader range of extensions, e. g., per-

forming unification modulo both generalised rewriting and heterogeneous trans-

ferrelations, potentially solving problems sometimes referred to as concept align-

ment. We conclude with two concrete sticky issues in interactive theorem proving

that such extensions could help addressing. The first one is the identification of

canonical natural number objects in types, e.g., {z : R|3n : N,z = ¢(n)}, etc.

The second one is the identification of different parametric constructions, which

happen to coincide for some specific classes of parameters, e. g., the ring Z/qZ,

defined for all integers ¢ > 0, and the GaLois field F,, defined when ¢ = p¥,

happen to be canonically isomorphic if and only if g is prime.
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Introduction

In the two previous parts, we presented two solutions to deal with the general
problem of proof transfer, from a particular angle. The first one, TRAKT, was de-
signed starting from zify, an ad hoc preprocessing tool targeting the lia tactic.
The second one, TROCQ, is a parametricity translation, a more general method
with a more theoretical approach. In this part, we focus on the implementation
of these tools. In this first chapter, we stand at the level of the software architec-
ture used to create these plugins. In the next chapter, we detail the problems that
arise when implementing a parametricity plugin such as TRocQ.




Software architecture
of a preprocessing plugin

Despite their different goal preprocessing strategies, both tools designed in this
thesis tackle a similar problem and have similar needs. Therefore, we devised
a common software architecture for both plugins, illustrated in Figure 12.1* and
presented in this chapter. First, the preprocessing tool needs to know which mod-
ifications it needs to apply to the initial goal. The user therefore needs to com-
municate information to it before entering proof mode. To do this, our architec-
ture integrates a knowledge base into the tool, with commands to add data to it
(§ 12.1). Second, the plugin must implement a preprocessing algorithm accessi-
ble from CoQ’s proof mode. The architecture thus includes a tactic that imple-
ments a translation taking as input the initial goal and possibly parameters, in
order to build, using the knowledge base, the associated goal after preprocess-
ing along with a proof term justifying the substitution (§ 12.2). After running the
preprocessing tool, the user only has to prove the associated goal, ideally with
another proof automation tool.

% | commands
user knowledge

initial goal )
@ preprocessing
tactic

=6
SEICINSIES ‘
.~

proofof G' = G ‘

Proof.

. - knowledge base
associated goal

n Brooror 6. automation tactic
Qed.

For example, to preprocess the following initial goal, both in the context of TRAKT
and TRocQ, the user must state how they wish to translate type int, its 8 constant
and - operation, as well as equality:

forall (x y : int), x -y =0

Thisinformation is user knowledge, given via commands and stored in the know!-
edge base. The user then executes the tactic, providing parameters specific to
eachtool. Thetactictraversestheinitial goaland builds the associated goalalong
with an implication proof between the two, allowing a change in the proof con-
text, leaving only the associated goal to prove. A plausible associated goal could
be the following, for instance with lia as the automation tactic, associating int
to Z, equality to itself, and the various values in int with their counterparts in
l:

forall (x y : Z), x -y =0

12
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1: The partsin orange correspond to the part
of the proof scenario to implement in the pre-
processing plugin.

Figure 12.1: Global software architecture for
preprocessing plugins developed during this
thesis
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Since both plugins were developed in CoQ-ELPI, we will use examples alterna-
tively in TRAKT and TRocQ to illustrate our points. This technical choice was made
for several reasons. First, this meta-language offers a high level of abstraction re-
garding the syntax of CoQ terms. Indeed, the HOAS encoding of terms works very
well with eigenvariables of the ELpilanguage, allowing the handling of A-terms
containing binders without ever having to maintain correct DE BRUIJN indices. In
addition, the use of meta-level variables to represent CoQ unification variables
makes it easy to handle terms with holes — a frequent situation when quoting
terms written in CoQ’s surface syntax — or even to forge terms with holes in the
meta-programs and delegate some of the work to CoQ by exploiting its elabora-
tor and typechecker. Next, the wrapper formed by CoQ-ELPI around the ELPI lan-
guage provides a real toolbox for meta-programming in CoQ, with various useful
APIs: creation of commands and tactics, fine control over the behaviour of unifi-
cation and conversion, definition of terms and types, manipulation of universes,
etc. Finally, the ELPI language is built around the paradigm of logic programming,
lending itself very well to the implementation of recursive algorithms traversing
syntax trees, such as those developed during this thesis. A fortiori, when they are
based on inference rules, like the algorithm at the heart of TRocQ, we obtain a di-
rect correspondence between the code and the description of the algorithm on

paper.

12.1 User knowledge base

An asset of both plugins presented in this thesis is to be extensible, i. e., to allow
the user to customise preprocessing by registering additional information before
translating the goal. In the case of TRAKT, the additional data are embeddings of
types, relations, symbols, etc. In the case of TRocQ, they are parametricity wit-
nesses. This section presents the use of CoQ-ELPI databases as a user knowledge
base (§12.1.1), as well as interesting technical aspects of the storage of CoQ terms
in a meta-level database (§ 12.1.2).

12.1.1 Use of Coq-ELPI1 databases

Plugins TRAKT and TRoOcQ use several databases to organise the information to
be stored. As explained in § 4.2.1, within CoQ-ELPI, a database is a series of facts,
i.e., predicate instances that are always true, whose arguments are the data we
wish to store. Thus, for example, TRAKT registers symbolembeddings asinstances
of a symbol predicate taking as arguments the necessary data, listed in § 6.1.3.
In the same way, each different type of information to store is associated with a
particular predicate in the database, so as to structure the code and give infor-
mative error messages when a piece of data is missing. In TRocQ, axioms also
have a dedicated predicate, so that the plugin can be used without adding them
automatically, and so that goals that do not require them can still be translated.
Commands are defined in order to add data in a cleaner way. For example, in the
case of awitness u of the univalence axiom, the command to use in TRocQ is the
following:

Param Register Univalence u.

103
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12.1.2 Storage of CoqQ terms

Most proof automation tools work with a knowledge base containing constants
selected from the context. For example, the ring tactic uses a base of instances
of an algebraic ring structure, and the auto tactic performs a proof search froma
list of lemmas chosen by the user. The design of these knowledge bases is difficult
because storing CoQ terms at the meta level raises subtle questions. Indeed, the
surface syntax of CoqQ hides various pieces of information through notations and
implicit elements — arguments, universe instances, etc. However, these holes left
in the terms are actually variables that can interact with the global state of the
proof assistant, via unification constraints or the graph of universe constraints
for example, as soon as unification is triggered between a term with holes and
another term, which happens systematically when reading a database indexed
by such terms. This means that storing terms with holes in a database is not a
robust choice. However, this syntactic lightness is crucial from the user’s point of
view, as manually annotating all the terms in their entirety would make the use
of the proof assistant very tedious. In cases where the holes left in the terms can
be inferred from the rest of the term, we can delegate this work to the CoqQ elabo-
rator and store the complete term obtained. However, the elaborator always fills
a term in a certain context, that may vary between the time at which the knowl-
edge base is filled and the time at which the preprocessing tactic is executed. For
instance, two terms that appear to be unifiable may not be so in their complete
form, if the term searched in the database is syntactically different from the one
that was previously registered after going through the elaborator. Making system-
atic use of elaboration on the arguments of a CoQ command intended to register
termsin a meta-level database is therefore a naive solution, which leads to errors
that are difficult to trace in the long run. In practice, an interesting trade-off, in
order to allow the user a certain amount of freedom in the syntax while storing
terms with maximum independence from the global state of CoQ, is to store in the
database only global references, i. e., terms identified by their name registered in
CoQ.2

12.2 Traversal of the initial goal

Once the knowledge base has been designed and filled by the user, the prepro-
cessing tool translates the initial goal. This translation takes the shape of a re-
cursive algorithm defined by induction on the syntax. This section presents the
general structure of a tacticimplementing such a translation (§ 12.2.1), as well as
the lessons to be learnt from the implementation of TRAKT (§ 12.2.2).

12.2.1 Atranslation tacticin CoQ-ELPI

Therole of the translation tactic is to traverse the initial goal in order to build both
the associated goal and a proof that substituting it for the initial goal is a valid
operation. Then, it must apply this proof, to leave the user with a proof context
containing only the associated goal, without any additional proof obligation.

Structure of the tactic In both TRAKT and TRoCQ, the translation tactic reads the
input goaland calls the main goal traversal predicate, that outputs the associated
goal along with a preprocessing proof. We then use the refine operation, that

2: These include constants, inductive types,
and constructors.
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performs essentially the same action as the Coq tactic with the same name, i.e.,
applying a proof term with holes, the holes representing the new proof obliga-
tions. In our case, we expect a single hole, having the type of the associated goal
and ideally being provable using a proof automation tactic. The call is therefore
the following:

refine {{ 1p:Proof (_ : 1p:EndGoalTy) }} InitialGoal NewGoals

Variable Proof contains the proof of implication, and EndGoalTy is the associ-
ated goal, both generated by the translation.

Recursive translation predicate Implementing the translation algorithm is the
focal point of a preprocessing tactic. Itis a recursive predicate that takes as input
at least one term that in the first call will be the initial goal, and returns as output
at least two terms, the associated goal and the proof of validity for the substitu-
tion.

ELPI predicates can be defined with several instances, and PrRoLoG-like unifica-
tion in this meta-language allows selecting the instance corresponding to the
current case to be processed. If the arguments in the head of the instance do
not unify with the arguments of the current call to the predicate, the execution
moves on to the next instance, and so on until failure.? In the case of a predicate
defined by induction on the syntax of a CoQ term, one writes at least one instance
per construct available in the language. Several sub-cases for a same construct
can be distinguished by executing test predicates at the beginning of the body of
each instance. If one of these predicates fails, the next instance will be selected.
To force the program to explore only one instance, one can add a cut — with char-
acter | — after these test predicates. All this makes it easier to organise the code
and define the order of priority when testing the various available cases.

Furthermore, in order to apply in CoQ a proof term as complete as possible when
calling refine, it is necessary to give the proof to a typing and/or elaboration
predicate in order to fill the last holes that do not represent a future proof but a
type annotation left implicit in the translation predicate. This allows delegating
some of the work to CoQ and writing the proofs in a more natural way during the
development of the plugin.

12.2.2 TRAKT: lessons of a first attempt

The first prototype implemented following the software architecture presented
earlier is TRAKT, presented in this thesis in part I. The plugin improves preprocess-
ing based on canonisation, previously embodied by the zify tactic, by perform-
ing a similar but extended translation to handle goals in the SMT family. The im-
plementation of TRAKT allowed to identify interesting design patterns to bear in
mind for future projects in CoQ-ELPI. It has a few flaws, but overall it achieves its
objective, as shown by its successful integration into the SMTCoq library. This
subsection is an experience report.

Encoding of termsin HOAS A first useful feature of CoQ-ELPI is the encoding of
terms in HOAS. Thanks to this encoding, contexts can be expressed as functions
in the meta-language. Forexample, a context C| -] is represented with a variable
C of type term —> term. Completing the context with a term x then amounts to
performing a functional application C x; updating it by going under a new node,

3: Itis good practice to always define a last
instance catching all the remaining cases and
failing with an error message.
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for example a one-argument function f, is done by creating a new meta-function
[:I :4

pi x\ C' x = C (app [f, x1)

Inthis encoding, binders are the association of a term representing the type of the
bound variable and a meta-function representing the body of the function in the
case of an abstraction orthe codomain in the case of a dependent product. Cross-
ing such a binder is done by creating a fresh local variable using the same process
as above. All the terms computed from the application of the meta-function are
expressed as a function of this variable, allowing terms to remain closed through-
outthe process. As these terms are also meta-functions, it suffices to add a binder
constructor to obtain a well-formed CoQ term. For example, here is a snippet ex-
tracted from the instance of the main predicate of TRAKT in charge of preprocess-
ing dependent products:®

preprocess (prod N T F) /* ... «/ := |,
@pi-decl N T x\ preprocess (F x) /* ... «/ (F' x) (PF x),
% ...

In one line of code, we introduce a fresh variable x in the domain T to make a
recursive call on the codomain F x and get the associated codomain F' x as
well as a proof PF x. The rest of the predicate reworks these terms to obtain the
associated dependent product and the preprocessing proof.

Finally, the abstraction of a subterm ¢ in a term w into a function f such that
u = ft isasimple task in CoQ-ELPI. Indeed, there is a copy predicate in the
standard library, initially defined as a deep identity: it traverses the whole struc-
ture of a term and applies an identity to the leaves of the tree. By adding a lo-
cal instance of copy, it is possible to perform substitutions: with the additional
instance copy X Y, any occurrence of X encountered during the traversal is re-
placed with Y in the output term of the predicate. By representing ¢ with a vari-
able T and » with U, we can abstract ¢ in « in a single line:

pi x\ copy T x = copy U (F x).

We replace all the occurrences of T in U with a fresh variable x, yielding a meta-
function F that represents the desired abstraction. One can then use this meta-
function directly or turnitinto a proper CoqQ function by adding a binder on top.

Customisation of Coqterms Another crucial featurein CoQ-ELPIis thatit allows
developers to define new types and add constants with the type of their choice.
Itis therefore possible to emulate the behaviour of algebraic types found in more
traditional functional languages, by declaring a new type and various constants
to represent its constructors. Here is an example of definition of natural numbers
in ELPI:

kind nat type.
type zero nat.
type succ nat = nat.

Asthesevaluesare not proper algebraic types, the set of constructorsis not closed
and the developer or user of an ELPI codebase can very well add new constructors
to a type defined inside it. For instance, the CoQ-ELPI API for CoQ term manipu-
lation exposes an extensible representation of terms, which is excellent news for
meta-programming. Indeed, it is possible to create new nodes in the AST of CoQ
terms to represent various useful pieces of information when handling terms at

4: In this code, x is a universal constant rep-
resenting a bound variable, allowing access
to the body of meta-function C to define C'.
Because of its status in ELPI, it must be made
explicit as an argument to C', so that it does
not escape its local scope.

5: In CoQ-ELPI, dependent products are rep-
resented with prod N T F terms, where N
is the display name of the bound variable
in CoqQ, T is the domain, and F is a meta-
function containing the codomain.
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the meta level. This technique is used in TRAKT, where two new constructors are
added, for the purpose of annotating CoQ terms:

type prod2 name — term — term — (term — term) - term.
type cast term —> term.

The prod2 constructor is similar to the original prod constructor used to repre-
sent dependent products, the difference being that it contains an additional ar-
gument of type term. Thanks to this argument, it is possible to make a depen-
dent product containing information about the domain before and after transla-
tion. This piece of information can be used to find out if the type of a bound vari-
able has changed during translation, so that the proof can be adapted accord-
ingly. The cast constructor is used to distinguish embedding functions added
by the translation algorithm from any embedding functions that might already
be present in the initial goal before translation. In both cases, a clean-up pro-
cedure must be executed after this information has been used, so that the term
returned to CoQ can be translated again in the proof assistant’s native syntax. In
fact, in order to make CoQ terms available in the meta-language, the ELPI type
used to represent them is in bijection with the native type in CoQ, so the addi-
tion of these new constructors prevents CoQ-ELPI from switching between both
representations. In the case of TRAKT, this clean-up procedure is straightforward,
since the only thing to do is to delete cast annotations, leaving the underlying
term instead, and forget one of the two domains in the prod2 nodes, replacing
them with prod nodes, in order to recover a well-formed CoQ term.

Reification of proofs A useful meta-programming pattern identified during the
implementation of TRAKT is the reification of proofs, i.e., the design of an alge-
braic type in the meta-language to represent proofs. This gives a higher level
of abstraction than handling the raw CoQ terms representing the various proof
steps to perform in order to rewrite the initial goal into the associated goal. In
addition, the use of these reified proofs helps to understand the proof fragments
built by the meta-program during the translation, and allows externalising the
generation of the final CoQ proof term into another predicate than the main one,
thus improving readability in the code of the plugin. For instance, proofs within
TRAKT are first generated in an ELPI type proof whose constructors represent the
various possible proof steps during the translation, then they go through a func-
tion that reconstructs the corresponding CoQ proof fragments before returning
the final term to the proof assistant.

Traversing the term and maintaining the context Despite all the positive points
identified, TRAKT suffers from some heaviness, in particular in its main translation
predicate. Indeed, as explained in § 6.2, the translation must distinguish covari-
ant positions from contravariant positions, preprocess terms differently depend-
ing on whether their type is embeddable or not, and keep the context of the cur-
rent term in memory in order to generate rewriting proofs applying to the whole
logical atom, for proof composition. For all these reasons, the predicate has ad-
ditional parameters to know which case of the translation to apply to the current
node. Each new feature added is a list of new special cases to deal with, which
adds more arguments and tests to the predicate.® In addition, there is a high num-
ber of case analyses that are sometimes deep, which makes them difficult to ex-
press just by adding instances to the predicate. They are therefore implemented
with conditional branches, which are not a native construction in ELPI. Branches
are made via an explicit test predicate if, which slightly hinders readability.

6: Here, the problem is not particularly due
to the meta-language, but rather to the ad
hoc design approach of the plugin, targeting
short-term utility for CoQ users.
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TRAKT is asuccessin practice, butitsimplementation reflects its bottom-up model,
centred first and foremost on a concrete problem to solve, with some abstraction

giving the plugin its extensibility and flexibility, detailed in § 6. The few limita-
tions mentioned are some of the reasons that led us to think about a more gen-
eral solution, a top-down design from theory to practice. Parametricity plugins

developed in the 2010s hold the promise of gathering all the cases of translation

into a general framework, with an implementation that is admittedly more dif-
ficult but also more elegant. TRocQ pushes this approach towards unifying the

various parametricity translations themselves, bringing certain subtleties to the

implementation, that are presented in the next chapter.
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Implementation of a
parametricity plugin

The second prototype designed during this thesis, TRocQ, aims to solve the same
preprocessing problem as TRAKT presented earlier, while being able to translate
any CC,, term. TRoCQ s in particular a refinement of the univalent parametricity
translation, dispensing with the univalence axiom wherever a manual process-
ing would not use it. This refinement involves the design of a hierarchy of X-
types representing types of more or less rich parametricity witnesses, ranging
from the raw parametricity witness to the univalent witness. The levels of wit-
nesses, called parametricity classes, are then constrained during the traversal of
the goal to allow only the witnesses that are rich enough to build the preprocess-
ing proof of the initial goal. The final classes are set after this traversal in a sep-
arate procedure, in order to obtain a unique translation. Constraints added dur-
ing the process require a syntactic way to represent and manipulate parametric-
ity classes, so we use an annotated type theory where all universes come with a
parametricity class. Finally, in a real-world context, the translation works from
a knowledge base containing user-proven parametricity witnesses on different
constants that may appear in the goals to be translated.

initial goal (@

constraint graph knowledge base

annotated goal G"’ "" ‘

traversal

=

=

G~y G Gl
J

erasing

|

associated goal G'

GR preprocessing proof

Thus, the mode of operation of the implementation of TRocQ can be summarised
by Figure 13.1. First, the initial goal G is annotated by adding fresh variables
on all universes, i. e., variable parametricity classes that are still unconstrained,
yielding a goal Gt that will be the input goal to traverse. This traversal applies
structural rules and generates a new goal G'" aswellasa parametricity witness
G*é relating the two goals at level (0, 1), the smallest level subsequently allow-
ing extraction of a proof of &'t — G* from the witness. The traversal adds
various constraints on the parametricity classes, that are represented with a con-
straint graph. After the traversal, the graph is reduced and the final parametricity
classes are set. The assignment of parametricity class variables triggers queries
in the knowledge base to retrieve any required user-provided witnesses, at the
right level for the overall proof to be well typed. Finally, once all the terms are
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Figure 13.1: Mode of operation of TRocQ
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complete, erasure is performed to recover an associated goal G’ and a prepro-
cessing proof to extract from G, as two valid CoQ terms.

This chapter raises various points of technical interest in the implementation of
TrROCQ. First, we look at the generation of the parametricity hierarchy, the frame-
work on which everything else in the plugin is based (§ 13.1). Next, we explain
how CoQ-ELPI’s paradigm brings the implementation of this framework closer to
its relational description (§ 13.2), and then describe the implementation of para-
metricity class inference (§ 13.3). Finally, we identify the limitations of the current
implementation of universe polymorphism in CoQ, a crucial feature in the imple-
mentation of TRocQ (§ 13.4).

13.1 Generating and inhabiting the parametricity
hierarchy

In the implementation of TROCQ, we use meta-programming to write the goal
traversal procedure, but also to set up the plugin beforehand, to automate away
the combinatorial complexity introduced by the parametricity hierarchy. There
exist 6 levels in the hierarchy and a parametricity class is a combination of a co-
variant level and a contravariant level. Therefore, there are in total 36 possible
parametricity classes, and consequently as many variants for each definition in-
dexed by a class: parametricity witness types, parametricity lemmas, weakening
functions, etc. This multiplicity is such that it would be unreasonable to write
all the definitions manually. The symmetrical formulation of parametricity wit-
nesses reduces this manual effort to 6 variants, one for each level of the hierar-
chy. The remaining terms can then be generated by combining the 6 base vari-
ants. In this section, we show how this generation using CoQ-ELPI helps both the
developer when setting up the plugin and the user by handily manipulating the
parametricity witnesses they added to the knowledge base.

13.1.1 Generation of the hierarchy and plugin set-up

The theoretical presentation of TRocQ defines a hierarchy of parametricity wit-
ness types to relate two types A and B, ranging from the raw parametricity wit-
ness type A — B — [ to the univalent witness type Param' A B from Theo-
rem 9.1.6. Theimplementation must define a witness type for every possible level
in the hierarchy and define as many versions of the parametricity lemmas.

Parametricity witnesstypes Parametricity witness types Param®? ), from Def-
inition 9.1.7, are indexed by a parametricity class («, ) and defined as the com-
bination of a relation with two unilateral witnesses M, R and Mﬁ R, each
one concerning one direction of relation R.

In CoQ, dependent pairs can be represented in an equivalent way with records. In-
deed, records ease the manipulation of structures because they are flat! and it is
possible to name the projections applied to them.? The implementation of TRocQ
therefore uses the following record as a concrete representation of Param®?) ;

Record Param@A@{i} (A B : Type@{i}) := {
R:A—>B —> Typeb{i};
covariant : Map, R;

1: Allterms at the same levelin the structure
can be obtained with the same number of
projections.

2: They are the fields of the record.
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contravariant : Mapg (sym_rel R)

3.

In this family of records, the implementation of the M unilateral witness types is
faithful to the theoretical description, by simply reformulating dependent pairs
asrecords and naming the fields. Thus, the M, unilateral univalent witness type
is implemented by the following record:

Record Map,0{i} {A B : Type@{i}} (R : A = B — Type@{i}) := {
map : A = B;
map_in_R : forall (a : A) (b : B), map a =bh = R a b;
R_in_map : forall (a : A) (b : B), Rab — map a = b;
R_in_mapK : forall (a : A) (b : B) (r : R a h),
(map_in_R a b (R_in_map a b r)) = r
}.

The map function is indeed a map from A to B; the field map_in_R describes the

property for the graph of this map to be included in the relation R; the opposite

property, i. e., that relation R is included in the graph of map, is described by the

field R_in_map; finally, the field R_in_mapK indicates that both previous fields

cancel each other out.® To obtain the remaining unilateral witness types, it suf-  3: The naming s inspired by the MATHCOMP
fices to remove fields from this record. For example, the record type without the ~library, where a cancellation property is
last field corresponds to unilateral witness type M5 and an empty record type named with a suffix K for “cancel”
corresponds to M. The association of a unilateral witness at level « on a re-

lation R and a unilateral witness at level 8 on the inverse relation sym_rel R

actually corresponds to a parametricity witness Param®?.

All these records can be generated with a CoQ-ELPI command, by writing a predi-
cate taking as a parameter the required parametricity class for the witness. This
predicate then opens a module as a namespace dedicated to this parametric-
ity class and defines the record. Here’s how to make such a definition in CoQ-

ELpi:t 4: For readability, we do not mention uni-
verses at this point.
coq.env.begin-module "Param43" none,

RelDecl =
parameter "A" _ {{ Type 3} (a\
parameter "B" _ {{ Type }} (b\
record "Rel" {{ Type }} "BuildRel" (
field [] "R" {{ lp:a = 1p:b = Type }} (r\
field [] "covariant" {{ Map4.Has 1p:r 3} (_\
field [] "contravariant" {{ Map3.Has (sym_rel 1p:r) 3} (_\
end-record)))))),
coq.env.add-indt RelDecl _,
coq.env.end-module _

Values parameter, record, field,and end-record are constructors of a CoQ-ELPI
type used to represent CoQ definitions of inductive types. The coq.env.* API
contains all the functions to interact with the CoQ environment, and in particular
to make new definitions.

Parametricity lemmas Among all the possible cases in the parametricity trans-
lation in TROCQ, some are only a matter of A-calculus — such as application or
abstraction — and building the witness essentially consists in using a combina-
tor to join the results of recursive calls; other cases require proofs defined inde-
pendently of the goal traversal procedure. In the case of the universe and the de-
pendent product, these are proofs p and prp, which we coined as parametricity



13 Implementation of a parametricity plugin 112

lemmas. These lemmas are represented in CoQ by a family of terms with the fol-

lowing types:5 5: In the case of the dependent product, the
retained parametricity classes are
Definition Par‘am’é : Param? Type Type.
(e, 8) = Du(v)

Definition Param}
(A A" : Type) (Ag : Param* A A')
(B: A — Type) (B' : A' = Type)
(Bg : forall a a' ay, Param® (B a) (B' a')) :
Param” (forall (a : A), B a) (forall (a' : A'), B' a').

These definitions are done in the same way as for the records, first making the
proofs manually for the 6 levels of the hierarchy, yielding 6 unilateral witnesses to
be combined together to obtain the final proofs. A case analysis is performed on
parametricity class 7y to determine whether the principle of univalence — for the
universe — or function extensionality — for the dependent product — is needed
to carry out the proof. The difference with parametricity witness types is that
the definitions here concern constants and not inductive types. The content of a
definition is therefore a CoqQ term in the encoding of CoQ-ELPI, and the predicate
used to make the definition is coq.env.add-const.

13.1.2 Flexibility of parametricity witnesses

In order to implement the parametricity relation in TROCQ, it is necessary not only
to define all possible parametricity witness types, but also to ensure a certain de-
gree of compatibility between these types and flexibility in their use. For both the
developer and the user, the content of parametricity witnesses must be transpar-
ent, and the hierarchy must not involve heaviness either in the code or in the user
declarations. For example, it must be easy to extract a piece of information from
a record that has a sufficient class to contain it, and it must be possible to accept
a witness supplied by the user wherever a weaker witness is expected.

Parametricity witnesses in TROCQ can be weakened using a function described
in Figure 10.6. This weakening occurs when the available witness is richer than
the expected witness type, so that the overall parametricity witness remains well
typed. This allows the user to declare only one parametricity witness to relate
two constants, at the highest parametricity class for which the proof is possible.
Thus, wherever a witness is required on these constants at a level reachable by
weakening from the level of the provided witness, a weakening function is added
automatically by the plugin.

A weakening function can be defined between a source annotated type and a tar-
get annotated type if the latter is a subtype of the former. In the base case where
the witnessis a record, the weakening corresponds to forgetting fields and recom-
posing the remaining fields in a new weaker record. The various weakenings are
generated from manually defined atomic forgetful functions, deleting the highest
levelfield in a unilateral parametricity witness. For example, here are the types of
the forgetful function from level 3 to level 2, and of the forgetful function from
class (4,3) toclass (4,2,) generated with CoQ-ELPI from the former:

Definition for‘getMapga {AB : Type} {fR : A > B —> Type} :
Maps R —> Map, R.

Definition forgetgigz) {A B : Type} :

Paran®3) A B — Param®2:) A B.
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Projections In the previous definition of the Map, record, the fields have been
named to make data extraction more readable. However, these fields are those
of a unilateral record that is then included in another record, and each record ex-
ists in a separate namespace. In this state, extracting a field is syntactically cum-
bersome and dependent on the parametricity class of the witness. However, the
forgetful functions can be declared as coercions, allowing CoQ’s typechecker to
forget an arbitrary number of fields and thus check that a cookie is sufficiently
rich. Thanks to this, a projection function is defined once for each field, and this
function can be applied to all parametricity witnesses containing this field while
preserving typing. For example, here is the projection on field map_in_R corre-
sponding to level 2, in the hierarchy:

Definition map_in_R {A B : Type} :
Param®:9 A B = forall (a : A) (b : B), mpRa=b—>Rahbh.

This projection actually concerns the left-to-right unilateral witness, since it ap-
plies to a witness of class (2,,0), but this method also allows the fields of the
right-to-left unilateral witness to be named differently. Thus, TRocQ also contains
definitions for symmetrical projections. The symmetrical projection of map_in_R
isnamed comap_in_R and has the following type:®

Definition comap_in_R {A B : Type} :
Param©2) A B = forall (b : B) (a : A), comp Rb=a >R ab.

13.2 Implementation of the parametricity relation

The parametricity framework of TRocQ was designed with the aim of being im-
plemented in CoQ. Its relational presentation, detailed in Figure 10.5, is heavier
than the traditional presentation of parametricity translations, but has the advan-
tage of making explicit details that are important at the time of implementation,
namely the steps of manipulation of bound variables as well as the origin of the
terms presentin the conclusion of the inference rules. To implement TRocQ, CoQ-
ELPIisanatural choice, its logic paradigm being entirely in line with this relational
presentation. These various design and implementation choices have resulted
in a high degree of similarity between the theoretical presentation of TRocq and
the code of the relation. This section highlights this readability in the implemen-
tation of TRoCQ.

13.2.1 From inference rules to a logical program

First of all, we can see that the deductive presentation of an algorithm fits in very
well with logic programming. Indeed, the algorithm can be implemented with
an ELPI predicate, where each case of the algorithm corresponds to an instance
of the predicate, and for each case, the head of the instance corresponds to the
conclusion and the body of the instance corresponds to the premises. So, just
as we would construct a tree on paper by stacking various rules of the algorithm,
starting with the conclusion to be obtained at the root of the tree, the CoQ-ELPI
implementation consists of a call to the parametricity predicate, with each recur-
sive call representing a new rule to add to a branch of the tree.

However, the theoretical presentation keeps a certain level of abstraction through
the presence of the TRocQCoNv rule. This rule concentrates all the flexibility of
parametricity in TROCQ, in the fact that it can be added anywhere in the derivation

6: Value comap is the symmetrical field of
map and hastype A = B.
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tree to make valid a parametricity witness stronger than necessary. Although this
elegant rule avoids adding weakenings to all the other rules, it makes the goal
traversal procedure non-deterministic because there are two possible rules for
each construct of the language. Itis up to the implementation to choose when to
use this TRocQCoNV rule. Moving from inference rules to the logical program in-
volves making the goal traversal algorithm deterministic, followed by associating
each element” appearingin the rules with a corresponding atomic code fragment
in CoQ-ELPI.

Making the algorithm deterministic In TRocQ, the implementation of the para-
metricity relation systematically uses the TRocQCoNv weakening rule in the base
cases, i. e., on variables and constants. These are cases in which a premise might
not be provable in the absence of weakening. In the case of variables — the rule
TROCQVAR —, the premise directly checks the parametricity context = to find an
associated witness. However, this witness does not necessarily have an anno-
tated type identical to the one at which the variable is processed. In the case
where the type of the variable contains parametricity classes, the weakening rule
is even a crucial tool to constrain these classes during traversal of the goal. The
case of constants is analogous: the knowledge base contains a finite number of
possible associations for the same constant, with annotated types representing
precisely the dependencies needed to create the parametricity witnesses, and a
constantis not always processed exactly at one of these types. Weakening allows
using a potentially richer witness declared in the database if the annotated type
desired during the goal traversal does not exactly exist in the database. Using
weakening in the other cases of the predicate can lead to computing a richer para-
metricity witness than necessary, which is contrary to the objective of TRocQ.

Another non-deterministic element is visible in the case of the application — rule
TROCQAPP —, the only case containing a term whose origin is not set: the domain
A of the function at the head of the application. Rather than creating a fresh
variable at this point and potentially causing an unnecessary weakening in the
recursive call on f, the implementation retrieves the type of f from the context
to read the right value for A. In this way, the potential weakening operation car-
ried out when processing f concerns type B.

Correspondence between rules and code To study the link between rules and
code, let us start with the case of bound variables, using the TRocQVAR and TROCQ-
Conv rules. Here is the combination of these two rules implemented in TRocQ:

(z,T,z",zg) €A ~(A) . TXT'

Ar,zQT ~ o'+ T, zg

Now here is the corresponding instance of the predicate for the parametricity re-
lation in TRoCQ:®

param X T' X' (W XR) :- name X, !,
param.store X T X' XR,
annot.sub-type T T',
weakening T T' (wfun W).

The param predicate with four arguments is the main parametricity predicate.
The head of the instance corresponds to the conclusion of the rule, where W is the
weakening function generated in line 4. The name X condition is used to check
that X is indeed a variable and to make this instance fail on all the other terms,

7: Values, operations, kinds of premises, etc.

8: In the next few blocks of code, the display
predicates have been removed as they are
not useful in the presentation and do not de-
tract from our argument.
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in order to execute the instance dedicated to them instead. Lines 2 and 3 are the
premises. Predicate param.store is used to represent the A parametricity con-
text. It therefore appears that the association between the inference rules and
the predicate instance is fairly transparent.

Let us now look at a more complex case, that of the arrow type, which involves
constraints between parametricity classes as well as recursive calls to param:®

C=(M7N) (CA;CB)=D_>(C)
Cy=(My,Ny) A, AQOMaN) ~ A Ap
CB = (MB;NB) VAN |_t B@ D(MBJVB) ~ B’ BR

Ar, A—»BQOMN ~ A’ - B'+pG A By

param
(prod _ A (_\ B)) (app [pglobal (const PType) _, M, N])
(prod *_° A" (_\ B')) (app [pglobal (const ParamArrow) UI|Args]) :-
param.db.ptype PType, !, std.do! [
cstr.univ-link C M N,
cstr.dep-arrow C CA CB,
cstr.univ-link CA MA NA,
param A (app [pglobal (const PType) _, MA, NA]) A' AR,
cstr.univ-link CB MB NB,
param B (app [pglobal (const PType) _, MB, NB]) B' BR,
param.db.param-arrow C ParamArrow,
prune UT [],
util.if-suspend C (param-class.requires-axiom C) (
coq.univ-instance UIO [],

Args = [
pglobal (const {param.db.funext}) UIG, A, A', AR, B, B', BR
]
) (
Args = [A, A", AR, B, B', BR]
)

1.

The six premises are represented by lines 5 to 10 in the code block, in the same or-
derasin theinference rule. The remaining code retrieves the pS proof presentin
the conclusion (variable ParamArrow) and applies the right arguments to it, some
of which are implicit in the paper presentation.

13.2.2 Useful Coq-ELPI features

Asshowed intheinference rules describing the parametricity translation of TRocQ
— Figure 10.5 —, it involves operations of different kinds: recursive calls, con-
straints on parametricity classes, proof construction from parametricity lemmas
or witnesses added by the user. Making all these operations available requires
a certain amount of software infrastructure, however hidden in TRocQ’s imple-
mentation behind the division of the code into several files and specific features
of CoQ-ELPI, such as goal suspension or Constraint Handling Rules [51] (CHR).

First, splitting the code makes it easier to read. This is why, in the code of TRoCQ,
all the constraint logic on parametricity classes goes through an APl of cstr.*
predicates, so as not to expose this part of the implementation in the definition
of the main parametricity predicate, and thus remain as faithful as possible to the
inference rules.

9: The inference rule is a deliberately reor-
ganised version of the TROCQARROW rule, in
which some parametricity classes are explic-
itly named and universe constraints do not
appear. Indeed, as they are delegated to CoQ,
they do not appear in the code and can be ig-
nored here.

[51]: FRUHWIRTH (1994), “Constraint Han-
dling Rules”
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Second, the use of CoQ-ELPI’s CHR allows maintaining a global state containing
the various parametricity class constraints throughout the goal traversal. This
has the advantage that the data structure storing the constraintsisinvisible in the
param predicate,’® but also that no reified encoding of the parametricity classes
is necessary in the annotated terms. Indeed, a central feature in the use of CHR is
the reification of variables in the head of the rules. Unlike classic ELPI code mod-
elled on PROLOG, where the notion of term comparison is based on unification, in
the context of CHR, the first phase in the execution of a rule, pattern matching, is
carried out at the meta level. At this level, two syntactically different variables in
the various arguments of suspended goals can therefore not be unified. Among
other things, this allows indexing data structures on variables, and therefore leav-
ing the parametricity class variables as they are in the annotated terms.!

Third, goal suspension allows implementing the algorithm in the same way re-
gardless of the status of the initial goal. Indeed, when annotating a goal before
traversal, many fresh variables are created to represent parametricity classes that
are still unknown. In the initial call to the param predicate, in general, the para-
metricity class at which we wish to process the goal is known: we want class
(0,1) in order to extract a function from the new goal to this initial goal. In the
code of the relation for arrow types, variables M and N are therefore ground,
which then determines C and the other variables in the program that depend
on it. However, as recursive calls are made, it is possible that some parametric-
ity class variables remain undefined, not having a ground value before running a
subsequent procedure to determine parametricity classes.!? Yet, the code may
have to compute results from such variables.*> ELPI’s goal suspension feature
is therefore welcome in the implementation of TRocQ, since it allows blocking a
computation on a variable for as long as that variable is undefined, and then to
wake it up as soon as a ground parametricity class is assigned to the variable.

13.3 Parametricity class inference

A particularity of the parametricity relation in TRocQ is that it can relate a same
term to several valid associated terms. This is because the relation starts from a
term in CC; containing universes annotated with parametricity classes. How-
ever, in our case, the input term is obtained by an automatic annotation of the
initial goal that creates a fresh variable for each parametricity class. Furthermore,
the rules of TRocqQ do not explicitly constrain these classes to be equal to a partic-
ular value, but simply to be above or below a value. Thus, the goal traversal does
not set the different parametricity classes found in the annotated types, but only
constrains them. At the end of the process, some parametricity classes may then
have several valid solutions.

For example, when translating TIA : [J. A — A at level (0,1), a parametric-
ity witness of level (2,,0) at least is required on subterm []. This means that
all entries of the relation for [J that are above this level are also acceptable, as
they contain at least the required amount of information. Similarly, processing
N — N atlevel (1,0) will require two parametricity witnesses on IN, one at level
(0,1) at least and the other at level (1,0) at least. All witnesses of higher level
yield a well-typed final proof.

However, it is important to determine a final value for these classes, as these val-
ues have a potential impact on the amount of information requested from the
user, and even on the axioms required to perform preprocessing. In order to

10: Because it is a global state, it is possible
to never name or mention it in the code.

11: Internally, they are still associated with
aninteger, because the data structure storing
the constraints requires the keys to be com-
parable, which is a simpler task on integers
than on variables.

12: The associated problem, the solution
chosen and its implementation are the topic
of the next section.

13: For example, retrieving a value from a
database — line 11 in the latest code block —
or testing whether the level of a variable re-
quires an axiom — line 13.
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avoid the use of axioms as much as possible and request as little information as
possible from the user, it seems worthwhile to try to minimise all the parametric-
ity classes in the output witness. However, this minimisation problem does not
always have a solution, in particular when the goal contains user constants. The
implementation of TRoCQ uses a heuristic thatin many cases allows a satisfactory
solution to be obtained.

In this section, we define the inference problem and illustrate it with an exam-
ple. Next, we explore the various solutions considered and justify the technical
choices made in TRocQ. Finally, we give details on the implementation of weak-
ening and subtyping, as these are key points for the parametricity class inference
to work correctly.

13.3.1 Problem definition

In order toillustrate the problem of parametricity class inference, let us look at an
example. We consider a processing of the following initial goal, freshly annotated
automatically by TRocQ:

NF:0 5 A TMA:[".FA—FA

It contains three fresh variables «, 8, and «, one for each universe. The trace of
the traversal of this term made by Trocq is the following:

Processing of the initial goal at type (J(©1),
Application of TROCQPI.

- Processing of domain (0% — [1# at type [1(2::0),
Application of TROCQARROW.

« Processing of (0% at type [1©0:2),
Application of TROCQSORT.
Addition of constraint (e, (0,2;)) € 2 -
« Processing of [1# at type [1(2::0),
Application of TROCQSORT.
Addition of constraint (8, (2,,0)) € D .

- Processingof IIA : (V. F A — F A attype (01,
Application of TROCQPI.

« Processing of (17 at type [1(2::0),
Application of TROCQSORT.
Addition of constraint (v, (2,,0)) € D .
« Processingof F A — F A attype (1),
Application of TROCQARROW.
* Processing of F' A attype ((1:0),
Application of TRocQAPP taking [1* as the domain of F.
- Processing of F' attype (J* — (1.0,
Application of TRocQCoNv then TROCQVAR.
Addition of constraint 8 > (1,0).
- Processing of A attype [1%.
Application of TRocQCoNv then TROCQVAR.
Addition of constraint v > a.
* Processing of F' A attype (1),
Application of TRoCQAPP taking [1* as the domain of F.
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- Processing of F attype [J® — (1),
Application of TROCQCONV then TROCQVAR.
Addition of constraint 8 > (0,1).

- Processing of A attype [1%.

Application of TROCQCONV then TROCQVAR.
Addition of constraint v > ac — duplicate.

We therefore get a set of constraints at the end of the traversal, describing sets of
admissible values for a, B8, and 7, as well as relations between these variables
that must always be respected, but no concrete value is defined. The problem
is therefore to find an admissible assignment for these variables, based on the
constraints present in the inference rules of TRocQ.

Univalentsolution A solution to this problem always exists: it suffices to set all
classes to (4,4), which corresponds to a univalent parametricity translation. Let
us explain why such a solution is always valid. First, the various possible con-
straints in the traversal can always be reduced to order constraints between the
variables involved or equality to (4,4). A constraint of the form (a,8) € D

can be reduced when the value of 3 is known, by distinguishing two cases: if 8

belongs to {0,1,2,}2, then « is not constrained; otherwise, a = (4,4). The
procedure setting all the classes to (4,4) is therefore compatible with this con-
straint: if we set B to (4,4), the constraint implied on « is compatible since we
alsoset a to (4, 4). Aconstraint of the form (e, 8) = D, (v) where x € {—, I}

can be reduced to two order constraints when the value of «y is known. If we set
v to (4,4), then the dependency tables in Figure 9.2 yield o = 8 = (4, 4), which
is compatible since we also set these classes to (4,4). Finally, order constraints
between classes are never strict, so two classes a and 3 setat (4,4) always sat-
isfy an @ > [ constraint. Consequently, the solution that can be described as
univalent, is always valid.

Search for a minimal solution However, the univalent solution is not satisfac-
tory since it always requires the maximum amount of information from the user
and at least one axiom whenever a universe or dependent product is present in
the initial goal. Therefore, we look for another solution, with the opposite objec-
tive: the less information we ask for in general, the more goals we can process
from a given user knowledge base, and the less likely we are to need an axiom. It
seems natural to try to minimise all parametricity classes. However, it is not sure
that such a solution can be built, or that it actually achieves the objective.

Ontheonehand, aminimisation order for the parametricity classes presentin the
constraints must be determined. However, adding constraints during traversal is
not totally structural. Not all constraints on a node in the initial goal are deter-
mined when the node is traversed. For example, any occurrence of a bound vari-
able may induce the addition of a constraint on the parametricity classes present
in its type, even though this type has already been processed earlier, when the
binder introducing the bound variable was traversed. It is therefore not obvious
that minimising the variables in the order in which they are encountered is the
best solution. Furthermore, in the absence of a more detailed study of the be-
haviour of constraints according to the structure of the goal, we cannot rule out
the possibility that, for some goals, minimising one class of parametricity may
impair the minimisation of another class of parametricity. In such a case, min-
imising one class before the other would increase the second one, implying the
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use of an axiom that could have been avoided by changing the minimisation or-
der of the classes. This case seems more likely to occur in the presence of con-
stants in the initial goal, since the valid assignments of the parametricity classes
in the type of a constant are specific to that constant and a priori do not respect
any property common to all constants. The minimisation order therefore seems
difficult to define in an analytical way.

On the other hand, still in the case of constants, minimisation may not be an op-
timal solution. The dependency tables in Figure 9.2 suggest that the classes re-
quired on the domain and codomain of a function type increase with the class
required on that type. However, although this is intuitive in the case of func-
tional types, without further study it cannot be said that this property, that could
be described as monotonicity, generalises to all constants. In the case of a non-
monotonic constant, it could be counter-productive to attempt to minimise all
the classes. Consequently, even the action of trying to minimise all the para-
metricity classes present in the constraints could be an imperfect heuristic.

13.3.2 Solution chosenin TRocQ

In the context of the implementation of TRocQ, we propose an empirical solution
whose optimality is not guaranteed in theory. In this solution, it is assumed that
the entire computation is monotonic, so minimising the parametricity classes is
a good heuristic. It is left to determine the minimisation order.

Complex constraints A key point about the minimisation order is that, when
minimising a particular parametricity class, in order to select the minimal pos-
sible class, all the order constraints associated with that class must be known.
This is because the constraints added during traversal of the goal are either order
constraints or complex constraints, involving a dependency table in the same way
as in Figure 9.2. When the construct in question is a type constructor, it lives in
a universe equipped with a parametricity class that we will call an output class.
The dependency table then has one row per parametricity class, in which we can
read the various dependencies on the other parametricity classes linked to this
construct. These dependencies are obtained by first determining the output para-
metricity class. Once we know these dependencies, we can replace the complex
constraint with a list of order constraints from each of the classes present in the
row of the table. For each complex constraint, we therefore know that the vari-
able corresponding to the output class must be instantiated before the others, in
order to reduce the complex constraint into one or more order constraints.

For example, the goal used to define the class inference problem in § 13.3.1 is
a dependent product. The TROCQPI rule is used to determine at which types we
should process the domain (1% — [08 andthe codomain ITA : (V. F A — F A,
using a constraint (a, 8) = Dy (y). The goal traversal starts with an annotated
type [J©1) i e., it sets the output class to (0,1). We therefore have v = (0,1),
and it is only with this information that we can find the right row in the table of
Figure 9.2 allowing us to determine o and g.

Order constraints In an order constraint, a variable can be in a higher or lower
position. To find the minimal class for a variable, we consider all the order con-
straints in which this variable is in a higher position, as these constraints give
lower bounds for this variable. The minimal class is then the largest of the lower
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bounds. In the case where two variables are linked by an order constraint a > S,
B isalower bound for a.. Consequently, to determine the minimal class for «, we
must first know the ground class adopted for 8. This order constraint therefore
also constrains the minimisation order of both variables.

The global priority order is therefore determined using the following rules:

(a, B) € D reduces to an equality constraint on @ or no constraint, de-
pending on the value of B: ittherefore forcesvariable 8 to be instantiated
before

- Du(y) = (e, B) or D_(v) = (a,B) forces ~ to be instantiated before
a and §;

a > [3 forces B to be instantiated before a;

Dy (v, T) forces v to be instantiated before the parametricity classes
present in the annotated type T'.

13.3.3 Implementation

The role of the inference algorithm is therefore to generate the minimisation or-
der from the various constraints that appear during traversal, and then to select
the minimal possible class for each variable, with each assignment reducing com-
plex constraints into new order constraints on other variables yet unassigned.
This algorithm can be implemented in several ways.

Finite domain constraintsolving A firstidea is to note that the problem of para-
metricity class inference closely resembles a problem of finite domain constraint
solving. Such a problem can be elegantly solved in the style of Constraint Logic
Programming [82], idiomatic in PROLOG-based languages such as ELPI. Indeed,
each unknown parametricity class in the initial goal can be represented as a vari-
able with an initial domain ranging from (0, 0) to (4, 4), provided with a partial
order. The various order constraints added on the variables reduce their domain,
leaving only valid solutions. Complex constraints are put asleep until their out-
put class is known, and when it is, they are automatically reduced and replaced
by new order constraints. Each added constraint is also a constraint on the min-
imisation order. Thus, at the end of the traversal, the minimisation order emerges
naturally and it suffices to calculate the largest lower bound of each variable fol-
lowing this order to obtain the desired solution.

As we are dealing with parametricity classes and not integers, the domain of vari-
ables is not classic, therefore we need to implement an ad hoc constraint solver.
Constraint Handling Rules (CHR), available in ELP1 and presented earlierin §4.1.1,
are one of the best-known methods to express complex algorithms involving the
generation and management of constraints with rules. The CHR language is well
suited to the design of prototype constraint solvers, because the central ingredi-
ents of these solvers, constraint propagation and consistency checking,* can be
implemented as rules. The constraint solver combines these rules with a search
procedure that tests the remaining values in the domains after propagation. In
our case, rules are used to simplify complex constraints and reduce them to order
constraints on parametricity classes.

[82]: JAFFAR et al. (1987), “Constraint Logic
Programming”

14: The consistency property is the com-
patibility at all times between the domains
of variables and the various constraints on
these variables.
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Directstyle However, the elegance of such a solution comes at the cost of track-
ability of control flow in the reduction process. Indeed, in constraint solvers, when
constraints are declared, after an initial propagation phase, they actually remain
in the constraint store in an asleep state, watching the variables they bound to-
gether, to be awaken every time one of their domains is updated. This behaviour,
necessary to ensure consistency at any time, makes control flow very complex as
itis difficult to know when propagation will happen just by reading the code, thus
making debugging phases harder.

Instead, we present an inference algorithm in a more pragmatic style, first accu-
mulating constraints in a global constraint graph, then reducing it and instanti-
ating the variables afterwards. In this constraint graph, nodes are parametric-
ity classes — variable or ground, and different kinds of edges exist, one for each
kind of constraint possibly added during traversal of the goal. An example of con-
straint graph is available in Figure 13.2. For instance, the edges from X; to X,

and Xj represent the constraint (X5, X3) = D(X;), and the edge from X

to the constant class (3,2;) represents the constraint (3,2;) > Xg.

X4 <TX2 n X6 = (3,2b)

-
7
X1 - X3
AN

(2&, 1) X5
A special aspect of the constraint graph is that the direction of the edges is con-
sistent with the minimisation order of parametricity classes. Thus, in the graph
above, the edge from X; to X, meansthat thereis a constrainton a dependent
product but also that variable X is the output class, so it must be instantiated
before X,. The same applies to other kinds of constraints: X3 must be instan-
tiated before X, and Xg, X, before X,, etc. This means that the constraint
graph is also a priority graph. The final instantiation order can then be obtained
by performing a topological sort on this graph: input nodes are recursively re-
moved by adding them to a list, to obtain an admissible minimisation order, all
this while ignoring nodes that are not variables. For example, in the graph above,
an admissible orderis [X;, X5, X4, X3, X5, X;]. If we respect the minimisation
order, when a variable is instantiated, all the edges pointing to this variable, i.e.,
all the lower nodes, must form a set of constant classes. Each time a variable is
instantiated, the corresponding node is removed from the graph. Then, the com-
plex constraints for which the freshly instantiated variable is the output class can
now be reduced to order constraints and added back to the graph. In this way, the
invariant is maintained and the next variable is ready to be instantiated. For ex-
ample, when X, isinstantiated with the value (2,,1), the node disappears and
we can reduce the constraint (X,, X3) = DPp(X;) into two order constraints
X, > (2,,4) and X3 > (2,,1) that are added back to the graph. The next
variable in the minimisation order is X,, and the only constraint pointing to the
associated node in the graph is this new order constraint. So there are no more
complex constraints and instantiation can proceed. The process continues in this
way until all the nodes have been removed from the graph.

Figure 13.2: Example of constraint graph
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13.3.4 Weakening and subtyping

The addition of constraints on a parametricity class ensures that the class as-
signed to it after translation matches the needs of the various occurrences of this
variable, i. e., that the associated parametricity witness has sufficient information
in all its occurrences in the global witness. However, this does not mean that all
instances need the same parametricity witness. It is very likely that at least one
occurrence of the variable requires less information than is contained in the wit-
ness. Insuch a case, to guarantee the well-typedness of the proof term, a weaken-
ing function must be inserted in front of the witness. The nature of this function
can only be determined when we know the source class and the target class of
the weakening.

For example, let us take the goal processed in § 13.3.1:
NF:0* 5 [P MA:(".FA—SFA

In the trace of the traversal, we can see that the subterm F' A is processed twice,
attype (019 and then at type (J©1. During the traversal, variables F and A
are given associated variables F” and A’. In the global parametricity witness, at
the position of the first occurrence of F' A, the witness relating itto £’ A’ must
have type Param™?” (F A) (F" A”), and at its second occurrence, a proof of
type Param®" (FA) (F" A”) is expected. Both occurrences therefore involve
witnesses of different types, both subtypes of the final type that will be retained
after the class inference phase. However, this final type is not known during the
traversal, yet it is necessary to add a weakening function in front of the witness
Fg in the proof term at the moment the occurrences of F' A are traversed.

In order to solve this problem, in the implementation of TRocQ, weakenings are
represented syntactically with an identity with phantom arguments associated
with the parametricity classes present in the constraint graph:

Definition weaken (m; ny my ny : map_class) {A : Type} (a : A) := a.

This allows keeping a well-formed and well-typed term, while adding information
that s visible when the term is traversed. Once the variables have been assigned,
acompletion procedureis run, replacing these placeholders with true weakening
functions, that can be generated at this point, since the placeholder contains the
two necessary ground parametricity classes.

Note that weakening involves a suspension in the cases of the abstraction and
the application. The purpose of this suspension is to handle the case of a S-redex,
i.e., an application with an abstraction at its head. Suspension is implemented
by an ELPI data type that can contain the body of an abstraction in order to de-
lay the creation of the weakening function until the arguments supplied to this
abstraction have been read. Once again, we exploit the HOAS representation of
CoQ terms with ELPI meta-functions.

13.4 Universe polymorphism

Throughout this document, both in parts discussing theory and parts related to
implementation, we presented A-terms in calculi equipped with a hierarchy of
universes where universes are indexed by an integer representing their level. The
type system then allows giving to each universe [; atype, its successor [J; ;, or
any universe with a strictly higher level thanks to the cumulativity rule. However,
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the various parametricity lemmas we described are universe-polymorphic, i.e.,
they work with types from any universes as long as these universes respect the
various constraintsimposed by the definition of the lemma. Forexample, the rule
TROCQP1 uses three universe levels i, j, and k, that can take any value as long as
the constraint k = max(%, §) is respected.

When using parametricity lemmas, bound universes must therefore be instanti-
ated to form valid terms. However, the important property for typing is just ex-
istence of an admissible value for each bound universe. Therefore, when we are
sure that there is always a solution to the problem of universe constraints, we can
afford leaving universes implicit. For example, a parametricity translation such
as those presented in this thesis is a structural translation that does not intro-
duce additional universes or additional universe constraints with respect to the
context of the initial goal, and does not aim to reason about universes. As there
is no risk of introducing inconsistencies, we can afford ignoring universes in our
theoretical presentations.

Atthe time ofimplementation, universes can also be left implicit because the CoQ
kernel can infer them during typechecking. However, in the context of universe
polymorphism, this inference is less powerful because it must also infer bound
universes.'® It then becomes necessary to make explicit some universes present
in the terms. However, universe polymorphism is still an experimental feature in
CoQ-ELPI. In addition, some universes in TROCQ are algebraic, i.e., they are ex-
pressed using other universes and arithmetic operations, and the current imple-
mentation of Coq is limited regarding this feature. This section therefore details
the issues that arise when implementing TRocQ, about typical ambiguity and al-
gebraic universes.

13.4.1 Clearing typical ambiguity

When a universe-polymorphic constant is defined in CoQ, the universe variables
present in the term become bound universes. For example, in the following defi-
nition, A and B are types each living in a fresh universe (say u, and u; respec-
tively), but these universes are left implicit thanks to typical ambiguity, a feature
in CoQ that allows automated inference of universe levels:

Definition twice (A : Type) (B : Type) (f : A> A ->B) : A > B :=
funa = f a a.

When the term is given to CoQ to be stored as a constant and named twice, levels
ug and u; are replaced with bound universes, 7 and j respectively. The twice
constant is then an incomplete term awaiting a universe instance, i.e., an array
of universe levels that gives a value to each bound universe. Once again, thanks
to typical ambiguity, the universe instance can be omitted when using the con-
stant and Coq takes care of the inference, allowing users to benefit from the ad-
vantages of universe polymorphism without making the terms syntactically heav-
ier.

However, this inference is flawed because it does not minimise the number of
bound universes. Indeed, there are cases in which a universe-polymorphic con-
stant with at least two bound universes can be instantiated with the same uni-
verse several times within the same instance. Yet, in such a case, CoQ will allocate
a different universe variable for each bound universe in the instance. For exam-
ple, if the constant twice defined above is used in another term, it will appear

15: In the rest of this section, we consider
that we are in this context.
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instantiated by Coq, i.e., twice@{u; u,}, even though it is possible to instanti-
ate it twice with u;. If the term containing such a constant is then defined in Coq,
these universes become bound. As a result, the universe instance of the global
term contains more bound universes than necessary, leading in some cases to
subsequent ill-typed terms.

To guarantee the well-typedness of terms generated by a meta-program, we must
determine whether such cases are possible in order to know whether typical am-
biguity can be used. In the case of TRocQ’s implementation, many universes had
to be made explicit. Indeed, by carefully defining parametricity lemmas, it is theo-
retically possible to guarantee the invariant that a parametricity witness requires
as many universes as the initial goal. For this purpose, parametricity lemmas
must be defined by imposing a maximum size constraint on their universe in-
stance, which disturbs universe inference in CoQ. Most universes then have to
be annotated manually to have maximum control over the term that is actually
defined. To achieve this, it was necessary to add new functions to CoQ-ELPI to
allow handling universe-polymorphic terms, universe instances, etc.

For example, the parametricity lemma used to build a parametricity witness for a
dependent product, presented in § 13.1.1, is actually defined as follows in CoQ:

Definition Paramf@{i j k | i < k, j < k}
(A A" : Type@{i}) (A; : Param®@{i} A A')
(B : A —> Type@{j}) (B' : A" = Type@{j})
(Bg : forall a a' ap, Param®@{j} (B a) (B' a')) :
Param”@{k} (forall (a : A), B a) (forall (a' : A'), B' a').

Making universes explicit in the type of the definition in fact amounts to disabling
typical ambiguity, as Coq is no longer allowed to infer more related universes or
constraints than specified in the header of this definition, which leads to annotat-
ing the term by hand. Indeed, in the context of universe polymorphism, the proof
assistant can add universe constraints that we have not anticipated or that we do
not want. These inferred constraints are logical and necessary for the term to be
well typed, but they can result from poor manual annotation. If the universe in-
stance is blocked by making the definition header explicit as above, then these
additional silent constraints become typing errors. By iterating on the errors sup-
plied, we can then design the definition corresponding to the minimal annota-
tions desired. The equivalent of this header in CoQ-ELP1 is the following:

@udecl! [I, J, K] ff [le I K, le J K] ff =
cog.env.add-const %...

Value ff represents boolean false, indicating that the lists of universes and con-
straints cannot be extended by CoQ. Changing one of these booleans to true is
equivalentto addinga + after one of the two lists in the CoqQ definition, and gives
the proof assistant the freedom to add values. A constant K can then be instan-
tiated with pglobal K UI, where UI is the universe instance obtained from a list
of universe variables:

cog.univ-instance UI [Iy, Jg, Ky
13.4.2 Algebraic universes and bound universes

Actually, the size of universe instances in the parametricity lemmas could be fur-
ther reduced. Creating a new fresh universe for a dependent product and forcing
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it to be greater than the domain and codomain’s universes, as done in the para-
metricity lemma presented in the last subsection, can be avoided by using alge-
braic universes, i. e., universes created from other universes with two operations:
maximum and successor. Indeed, the typing rule for the dependent product in-
volves only two universes:

FFA:LO; la:AFB:L;
Fl_Ha:A'B:Dmax(i,j)

Thus, the parametricity lemma theoretically requires only two bound universes,
and the lemma for universes requires only one, since a universe is always related
to itself. As a result, it is possible to maintain the invariant that the associated
goal and the parametricity witness use as many universes as the initial goal.

However, the current implementation of universe polymorphism in CoQ does not
allow this kind of definition. This is because the parametricity lemma on depen-
dent products builds a parametricity witness in the form of a record, i.e., an in-
ductive type. Such a value is necessarily obtained by the corresponding record
constructor. However, for a technical reason in the current implementation of
the universe constraint graph verification algorithm in Coq, it is impossible to in-
stantiate a constant with an algebraic universe. It is therefore necessary to use a
fresh universe and additional constraints.

So, for each dependent product or universe appearing in the input term, the im-
plemented parametricity translation creates a fresh universe. Furthermore, with-
out a specific memory mechanism, encountering the same universe twice creates
two different fresh universes. All this makes it difficult to track universes used in
the traversal of the goal.

Finally, this problem prevents the implementation of a forward chaining proof
transfer feature within TRocQ. Indeed, rather than translating an initial goal G

to be proved within Coq, it could be interesting, by flipping all the parametricity
witnesses provided by the user in the knowledge base, to translate a lemma p’

into a lemma p usable in a proof in the context selected by the user for their for-
malisation. However, in such a case, at the time of definition, the header would
contain many useless bound universes, making it difficult to instantiate the term
in an optimal way afterwards. We could then obtain ill-typed proofs if we let CoQ
carry out inference of the universe instance, and manual annotation would re-
quire significant and artificial work since these bound universes have no relevant
raison détre.

In the context of the use of universe polymorphism in CoQ-ELPI, various predi-
cates can be developed, such asa coq.univ.super predicate to obtain the succes-
sor of a universe, or cog.univ.max to obtain the maximum of two universes, thus
making it possible to forge arbitrary algebraic universes. However, despite the
possibility of making these low-level details accessible from the meta-language,
when the term is translated into CoQ, the algebraic universe will inevitably be-
come a fresh universe variable accompanied by universe constraints.
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Conclusion and perspectives

Contributions

In this document, we have presented both prototypes of proof transfer plugins
for the CoQ proof assistant developed throughout this thesis. The general con-
text of this work is the search for solutions to allow a user to employ several for-
malisations of the same mathematical concept in their proofs in a transparent
way, while keeping interoperability between all the proofs performed on a given
theory, regardless of the representation chosen in each proof.

The first prototype, TRAKT, improves proof automation for statements from the
SMT family by reformulating these statements and expressing them in a canoni-
cal form adapted to the input format of the proof automation tools available in
CoQ. The project adds support for the theory of congruence and uninterpreted
functions to the existing automation tools, as well as more flexible logic process-
ing, allowing adaptation of the goal to the needs of various automation tactics.
The trakt tactic has been successfully integrated into the SMTCoqQ plugin via
the SNIPER project, making several goal pre-processing tools work together.

In TRAKT, different representations of a given mathematical object are related by
isomorphisms, or partial embeddings in the case of subtyping, and the tool fo-
cuses on goals of the SMT family, which are the target of the automated provers
that we wish to execute after pre-processing. This preprocessing bridging the
gap between automated and interactive theorem proving, is an instance of the
more general problem of proof transfer, target of the second prototype, TROCQ.
The main ingredient of this second contribution is a new modular parametricity
framework able to accomodate a more general class of relations than the pre-
vious approaches of raw and univalent parametricity. The modularity of TRocQ
lies in a hierarchy of parametricity witnesses exploited to perform proof transfer
while avoiding as much as possible the use of axioms when they are not neces-
sary.

Perspectives

The social objective of formal proof is to establish greater trust between humans
thanks to greater trust in the results of researchers, engineers, logicians, etc., i. e.,
certified proofs and computer programs. The various current implementations
of proof assistants all derive from different paths in the search for the best log-
ical framework to carry out these formal proofs, and within each of these tools,
there exists a wide spectrum of formalisation techniques. This Cambrian explo-
sion makes it possible to explore a vast space of possibilities, but isolates the var-
ious formalisation efforts from each other.

Any good practices brought from the domains of software development and pro-
gramming language theory are therefore welcome for users of proof assistants
who, de facto, by choosing this kind of software, accept the compromise of a
high level of confidence at the price of more — often way too — manual proofs.
Ideally, a user carrying out formalisation work would like to be able to use the



data structures they consider to be the most practical, without having to manage
equivalences manually for their development to conform to the encodings com-
monly used by the community of the proof assistant they chose. Conversely, if
a formalisation has already been carried out using an encoding of a mathemati-
cal concept, the user wants to be able to use this work with another encoding of
the same concept, given that they are equivalent. Proof transfer mechanisms are
an excellent intermediary tool in this kind of situation, and help factorise proof
efforts.

Nevertheless, there s still a step to be taken to turn the prototypes developed dur-
ing this thesis into real proof assistance tools. Indeed, as proof assistants are re-
search objects, the development of their toolingis being done at the same time as
the development of their logical formalism itself and of meta-programming tech-
niques. Although some of the foundations of these tools are already stable, such
as support for the Calculus of Constructions, or the use of logic programming to
perform syntactic translations, certain subtleties, mainly related to universes, re-
main unstable and are delaying their maturity.

From a more practical point of view, these prototypes could be made more usable
by pushing further the commands used to add information to the database. In
the case of TRocQ, we could imagine acommand that generates all possible para-
metricity witnesses relating an inductive type to itself. This kind of proof seems to
be always possible in theory, and would allow transfer of user data types within
an arbitrarily complex goal, for free. Management of the impredicative universe
P would bring the tool closer to the standard version of Coq rather than relying
on the HoTT library. Finally, we can imagine, for both TRAKT and TrocQ, build-
ing proof libraries to be added to the database as soon as the plugin is imported,
so that the user can effortlessly start performing proof transfer when it concerns
data types that are widespread in formalisations. A mathematician might enjoy
TrROCQ to be equipped with a library of parametricity witnesses already proven
for the data types in the MATHCoMmP library, so as not to have to carry out these
proofs themselves, and to be able to easily turn, e. g., a matrix into a list of lists.

The completion of these proof transfer tools would make it simpler to reason
modulo equivalence within the proof assistant. Bringing the construction of for-
mal proofs closer to the intuitive reasoning that can be done on paper attracts
new users, moving a little closer to a world without software faults, with all the
implied societal benefits.
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Résumé : En mathématiques comme en infor-
matique, il est d’'usage de faire appel a des ou-
tils numériques de vérification pour augmenter
la confiance dans les preuves et les logiciels.
La pratique la plus commune est le test, mais
elle est limitée. Les assistants de preuve in-
teractifs sont des outils permettant d’effectuer
des preuves avec une grande confiance, lais-
sant 'humain trouver les idées des preuves
tout en vérifiant méticuleusement que toutes
les étapes de la preuve sont valides. Cette
thése s’inscrit dans une lignée de travaux vi-
sant a automatiser les preuves, avec 'objec-
tif final de répandre I'usage des assistants de

preuve a la place du test logiciel, partout ou
cela est possible et pertinent. On s’intéresse
ici au partage de théorie formelle entre plu-
sieurs représentations différentes d’'un méme
concept mathématique, ou plusieurs imple-
mentations d’'une méme spécification. Sur le
plan théorique, cette étude s’appuie sur 'ana-
lyse de traductions de paramétricité pour le
Calcul des Constructions, et en propose une
généralisation. Ces résultats s’'incarnent dans
la conception de deux outils de transfert de
preuve, TRAKT et TROCQ, dont on discute
ici 'implémentation, a I'aide du méta-langage
CoaQ-ELPI.
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Abstract: In both mathematics and computer
science, it is common practice to use digi-
tal verification tools to increase confidence in
proofs and software. The most common prac-
tice is testing, but it is limited. Interactive proof
assistants are tools made to perform proofs
with high confidence, letting humans come
up with proof ideas while meticulously check-
ing that all proof steps are valid. This thesis
is part of a line of work aimed at automat-
ing proofs, with the ultimate goal of spread-
ing the use of proof assistants in place of soft-
ware testing, wherever possible and relevant.

Here, we are interested in sharing of formal
theory between several different representa-
tions of the same mathematical concept, or
several implementations of the same specifi-
cation. From a theoretical point of view, this
study is based on the analysis of parametric-
ity translations for the Calculus of Construc-
tions, and proposes a generalisation of them.
These results are made concrete in the design
of two proof transfer tools, TRAKT and TROCQ,
whose implementation is discussed here, us-
ing the CoQ-ELPI meta-language.
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