
THÈSE DE DOCTORAT DE

NANTES UNIVERSITÉ

ÉCOLE DOCTORALE NO 641
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Enzo CRANCE

Meta-Programming for Proof Transfer in Dependent Type Theory

Thèse présentée et soutenue à Nantes, le 19 décembre 2023
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)

Rapporteurs avant soutenance :

Sandrine BLAZY Professeur des universités, Université de Rennes, IRISA
Anders MÖRTBERG Associate professor, Université de Stockholm

Composition du Jury :

Président : Guillaume MELQUIOND Directeur de recherche, Inria, Université Paris-Saclay, LMF

Examinateurs : Sandrine BLAZY Professeur des universités, Université de Rennes, IRISA
Anders MÖRTBERG Associate professor, Université de Stockholm
Karl PALMSKOG Senior lecturer, KTH Royal Institute of Technology, Stockholm
Nicolas TABAREAU Directeur de recherche, Inria, Nantes Université
Enrico TASSI Chargé de recherche, Inria Sophia Antipolis Méditerranée, Université Côte d’Azur

Dir. de thèse : Assia MAHBOUBI Directrice de recherche, Inria, LS2N, Nantes
Co-dir. de thèse : Denis COUSINEAU Chercheur industriel (docteur), Mitsubishi Electric R&D Centre Europe, Rennes

Invité :

Mathieu BOESPFLUG Chercheur industriel (docteur), Modus Create

Doctoral Thesis

Meta-Programming for Proof Transfer
inDependent Type Theory

Enzo CRANCE

February 13, 2024

Supervised by Assia MAHBOUBı and Denis COUſıNEAU

À feu Marcel Coignard, dit « Monsieur l’abbé »,
Un homme extraordinaire et un puits de culture,

qui regrettait de ne jamais avoir pu explorer les sciences exactes.

Acknowledgements

En premier lieu, je souhaite remercier mes encadrants et les chercheurs avec lesquels j’ai travaillé au long de cette thèse,
sans qui ce document n’aurait jamais pu voir le jour.

Merci Assia, pour ton honnêteté intellectuelle, ta rigueur scientifique sans faille, ta patience, ta pédagogie, ta modestie,
ton humanité et ton ouverture d’esprit.

Merci Denis, pour ta prise de recul permanente, tes remarques pertinentes, ton optimisme, ta sympathie et tes précieux
conseils sur le plan professionnel.

Merci à vous deux d’avoir mis au point ce sujet de thèse, dem’avoir fait confiance pendant ces trois années et de toujours
avoir été très disponibles.

Merci Cyril, pour ton esprit vif, tes idées innovantes et tes plans sur la comète, sources demotivation dans la recherche.

Merci Chantal, pour nos échanges productifs et cette facilité que tu as à travailler en équipe. Merci également à Louise,
Valentin et Pierre pour leur travail sur notre publication commune.

Merci Enrico, pour ton aide dans l’apprentissage d’ELPı, tes nombreuses réponses détaillées àmes questions techniques,
et ton accueil chaleureux en Italie région niçoise.

Merci à Sandrine et Anders pour votre travail rigoureux dans la relecture de ce document. Merci à tous les membres de
mon jury de thèse pour leur présence à ma soutenance et leur intérêt pour mon travail.

Ensuite, je souhaite remercier les autres ex‑doctorants, doctorants et futurs doctorants qui ont croisé ma route. Merci à
vous tous pour les discussions variées, les pauses café, les soirées au bar.

Merci Martin d’avoir été mon compagnon de route tout au long de cette thèse. Merci pour ton optimisme, ta gentillesse,
ton humour et tous les services rendus, dont le fait dem’avoir nourri lorsque j’étaismalade et (plus oumoins) coincé dans
une résidence étudiante à Édimbourg. Peut‑être saurons‑nous un jour qui est le vrai thésard d’Assia.

Merci Hamza d’avoir partagé mon bureau pendant des mois et d’avoir fait office de canard en plastique lorsque j’étais
bloqué et que j’avais besoin d’une oreille attentive pour comprendre et résoudre mes problèmes.

Merci Xavier, pour ton accueil à mon arrivée, ta grande culture en informatique tant théorique que pratique, tes bons
conseils ainsi que ta résistance à toute épreuve à l’angoisse des dates butoirs.

Merci Theo (WıNTERHALTER), Meven et Loïc, pour votre accueil chaleureux, votre patience et votre pédagogie dans le par‑
tage de votre connaissance pointue de la théorie des types, ainsi que votre disponibilité pour répondre à mes questions
même après votre départ.

Merci Sidney d’avoir été mon compagnon de trolling, de coinche et de pinte dans les situations d’urgence.

Merci Pierre, pour ta capacité remarquable à penser constamment en dehors de la boîte, comme on dit outre‑Manche.

Merci Nils de m’avoir prouvé que les Allemands n’étaient pas tous méchants. À plus sous le bus.

Merci Théo (LAURENT), pour nos discussions fructueuses sur la paramétricité, aussi bien enmilieu académique qu’au bar
ou dans le train.

Merci Arthur (CORRENſON) d’avoir été mon binôme de chambre à plusieurs reprises aux JFLA et mon repère rennais au
milieu de tant de Parisiens.

Merci à Thomas, Peio, Robin, Simon, Koen, Yee Jian, Yann, Tomas2, Mara, Arthur, Virgil, Axel, Josselin, Amélie, Davide,
Emily et Stéphane.

Je remercie aussi les chercheurs, académiques et industriels, qui m’ont beaucoup appris.

Merci Pierre‑Marie, pour ta capacité remarquable (du numéro 3, dumedium) à adapter ton vocabulaire à la culture scien‑
tifique et technique de ton interlocuteur et ainsi pouvoir expliquer aisément énormément de notions techniques. Merci
pour ton humour et ta culture linguistique, politique, cinématographique et musicale, qui ont enchanté mon quotidien
au long de ces années passées chez Gallinette. Vive le Luxembourg!

Merci Matthieu (PıQUEREZ), pour ta vision du monde du travail, ton calme et ta façon de travailler sereinement dans l’in‑
formatique en continuant d’être unmatheux.

Merci Yannick, pour ta grande culture scientifique, ta précision germanique dans le raisonnement et ta manie de deman‑
der sans cesse quand aura lieu la fête.

Merci Nicolas, pour tous tes efforts pour faire vivre l’équipe Gallinette, et pour tes explications sur la paramétricité univa‑
lente.

Merci Guillaume, pour ta pensée scientifique indépendante et ton habileté à parler au degré 1.5.

Merci du fond du cœur à Alan, sans qui je n’aurais peut‑être jamais continué mon chemin dans la recherche.

Merci Florian, dem’avoir apporté des connaissances sur les nombres flottants et dem’avoir raconté autant de faissoleries
croustillantes.

Merci David, pour la liberté que j’ai pu avoir pendant ma thèse CIFRE chez MıTſUBıſHı ELECTRıC et pour la possibilité de
publier nos résultats en open source.

Merci à Kazuhiko, Matthieu (SOZEAU), Guilhem, Kenji, Marie, Gaëtan, Benoît, François, Éric, Delphine, Frédéric et Tho‑
mas.

Merci à Éric (TANTER) et Quentin pour les discussions intéressantes lors de vos visites à Nantes.

Merci à tous les autres chercheurs avec qui j’ai échangé pendant ces trois années.

Merci aux enseignants hors du commun qui ont contribué à la construction de la personne que je suis aujourd’hui : Marie‑
Jeanne, Marie‑Odile, M. ANDRÉ, M. et Mme HEſRY et M. KERAMBELLEC.

Merci àmes professeurs de l’INSA, et tout particulièrement Pascal GARCıA quim’a permis de développer ce goût de l’infor‑
matique bien faite.

Sur le plan personnel, je souhaite remercier ma famille pour tout l’amour qu’elle m’a apporté. Il s’agit bien du « centre
autour duquel tout gravite et tout brille», comme écrivait Victor HUGO.

Merci à mes parents, ma sœur Sarah, mon frère Roman, mes grands‑parents, mes oncles et tantes, mes arrière‑grands‑
parents et mes cousins.

Merci à Octave et Julia qui font maintenant partie de la famille.

Merci à ma belle‑famille : Jérôme, Nathalie, Alexis et Clarisse.

La rédactiond’une thèse est une rare occasiondepouvoir rédiger un textequi persistera à travers le temps. Jeprofite donc
de cette occasionpour adresser unepensée chaleureuse àmespotentiels enfants, neveux, nièces, et tous les descendants
de ma famille qui pourraient tomber sur ce document un jour.

Je remercie également mes amis pour leurs encouragements et leur présence à mes côtés.

Merci à mes amis de longue date, Martin, Baptiste, Hugo, Timothé, Florent et mon petit hyyu, pour tous ces moments
passés ensemble.

Merci à mes collègues de l’INSA de m’avoir si bien accompagné pendant mes études. Merci en particulier à Nominoë,
Alexis, François, Gaël, Lucas et Antoine. À nos parties de cidre‑pong et aux fous rires qui vont avec. Aux expatriés ou futurs
expatriés : que la Bretagne et la France vivent dans vos cœurs, où que vous soyez dans le monde, et à nos retrouvailles.

Merci Thibault, la « pourriture communiste», toujours disponible pour aller boire une bière et refaire le monde.

Mes salutations fraternelles au camarade Franouch.

Merci à Gaël, Antoine, Taha, William, Olivier et Julien, pour nos échanges de conseils au long du chemin du doctorat.

Enfin, un énormemerci à Séverine, celle qui a passé le plus de temps avec moi pendant ces années.

Merci pour ton soutien sans faille.

Merci pour les balades et les vacances qui m’ont permis de changer d’air.

Merci d’avoir ramené Trusty et Umi à lamaison, et par lamême occasion, énormément d’amour et de bonsmoments, des
sorties variées, de magnifiques photos, et une saine occupation sur notre temps libre.

Merci d’avoir accepté de regarder Star Wars.

Merci d’avoir accepté que je passe parfois beaucoup de temps avec celle que tu appelles Thérèse et que tu peux à présent
voir sous forme écrite et surtout terminée.

Je remercie chaleureusement tous ceux qui vont lire, citer, reprendre et faire vivre cette thèse à l’avenir.

EMPıRE DE LA BAſſE CHEſNAıE
MıNıſTÈRE DEſ TECHNOLOGıEſ NOUVELLEſ

« Ah tiens, d’habitude ça marche. »

AD MAJOREM PROPRıAM GLORıAM

Contents

Contents

1 Introduction 1
1.1 A short history of logic . 2

1.1.1 Historical foundations . 2
1.1.2 Towards mathematics and computer science . 3
1.1.3 Mechanisation of logic . 3

1.2 Proof assistants and automation . 4
1.2.1 A rock‑solid reliability . 4
1.2.2 Still highly manual proofs . 4
1.2.3 Contributions of this thesis . 5

THE COQ PROOF AſſıſTANT: THEORY AND PRACTıCE 6

2 A short primer to the COQ proof assistant 9
2.1 Types for proofs and programs . 9

2.1.1 The pure 𝜆‑calculus . 9
2.1.2 Simple types and the CURRY‑HOWARD correspondence . 10
2.1.3 The Calculus of Constructions . 13

2.2 An expressive programming language . 14
2.2.1 Universes and polymorphism . 14
2.2.2 Inductive types . 16

3 Proof assistance 22
3.1 Inference . 22

3.1.1 Unification . 22
3.1.2 Inference and ad hoc polymorphism . 25

3.2 Tactics and automation . 26
3.2.1 The proof mode . 26
3.2.2 Automated proof tactics . 29

3.3 Rewriting and proof transfer . 31
3.3.1 Rewriting . 31
3.3.2 Extension to equivalence . 32

4 Meta‑programming in COQwith COQ‑ELPı 34
4.1 A logic meta‑programming language for COQ . 34

4.1.1 A logic programming legacy . 34
4.1.2 Encoding of COQ terms . 36

4.2 A toolbox . 37
4.2.1 Databases . 38
4.2.2 Creation of commands and tactics . 39

TRAKT: PROOF TRANſFER BY CANONıſATıON 41

5 Goal canonisation: objectives and current situation 43
5.1 Content of the desired preprocessing algorithm . 43

5.1.1 Preprocessing of theories . 43
5.1.2 Status of logic . 45

5.1.3 Polymorphism and dependent types . 46
5.2 The zify family: features and limits . 46

5.2.1 Modular preprocessing of arithmetic . 47
5.2.2 Preprocessing of logic . 48
5.2.3 The mczify extension . 49
5.2.4 Limitations of zify . 49

6 Theoretical mode of operation 51
6.1 Gathering user information . 51

6.1.1 Type embeddings . 51
6.1.2 Logical embeddings . 52
6.1.3 Symbol embeddings . 53
6.1.4 Conversion keys . 53

6.2 Preprocessing algorithm . 54
6.2.1 Handling universal quantifiers . 54
6.2.2 Handling logical connectives . 56
6.2.3 Theory‑specific preprocessing . 58
6.2.4 The trakt tactic . 59

7 Conclusion and perspectives 61
7.1 Ecosystem of automation tools for COQ . 61

7.1.1 The need for preprocessing . 61
7.1.2 Modular transformations of the scope tactic . 63

7.2 Success of the plugin . 64
7.2.1 Examples of goals handled . 65
7.2.2 Integration of TRAKT with other tools . 66

7.3 Paths of improvement . 67
7.3.1 Polymorphism and dependent types . 67
7.3.2 Architecture of the preprocessing phase . 68

TROCQ: PROOF TRANſFER BY PARAMETRıCıTY 70

8 Parametricity in dependent type theory 73
8.1 Motivation and definition . 73

8.1.1 Typing and properties of𝜆𝜆𝜆‑terms . 73
8.1.2 Raw parametricity translation . 74
8.1.3 Limitations of the raw translation . 75

8.2 Univalent parametricity . 75
8.2.1 Enrichment of parametricity witnesses . 76
8.2.2 Type equivalence and univalence . 77
8.2.3 Univalent parametricity translation . 79
8.2.4 Omnipresence of the univalence axiom . 81

9 Type equivalence in kit 82
9.1 A new formulation of type equivalence . 82

9.1.1 Decomposing equivalence . 83
9.1.2 Hierarchical recomposition of parametricity witnesses . 86

9.2 Populating the hierarchy of relations . 87
9.2.1 Translation of universes . 87
9.2.2 Translation of dependent products . 88
9.2.3 The case of non‑dependent products . 89

10 A calculus for proof transfer 90
10.1 Raw parametricity sequents . 90

10.2 Univalent parametricity sequents . 92
10.3 Annotated type theory . 93
10.4 The TROCQ calculus . 94
10.5 Constants . 96

11 Conclusion and perspectives 98

IMPLEMENTATıON OF PREPROCEſſıNG TOOLſ WıTH COQ‑ELPı 100

12 Software architecture of a preprocessing plugin 102
12.1 User knowledge base . 103

12.1.1 Use of COQ‑ELPı databases . 103
12.1.2 Storage of COQ terms . 104

12.2 Traversal of the initial goal . 104
12.2.1 A translation tactic in COQ‑ELPı . 104
12.2.2 TRAKT: lessons of a first attempt . 105

13 Implementation of a parametricity plugin 109
13.1 Generating and inhabiting the parametricity hierarchy . 110

13.1.1 Generation of the hierarchy and plugin set‑up . 110
13.1.2 Flexibility of parametricity witnesses . 112

13.2 Implementation of the parametricity relation . 113
13.2.1 From inference rules to a logical program . 113
13.2.2 Useful COQ‑ELPı features . 115

13.3 Parametricity class inference . 116
13.3.1 Problem definition . 117
13.3.2 Solution chosen in TROCQ . 119
13.3.3 Implementation . 120
13.3.4 Weakening and subtyping . 122

13.4 Universe polymorphism . 122
13.4.1 Clearing typical ambiguity . 123
13.4.2 Algebraic universes and bound universes . 124

Conclusion and perspectives 126

Bibliography

Introduction 1
1.1 A short history of logic 2
1.1.1Historical foundations 2
1.1.2Towards mathematics and

computer science 3
1.1.3Mechanisation of logic 3
1.2 Proof assistants and automa‑

tion 4
1.2.1A rock‑solid reliability 4
1.2.2Still highly manual proofs . . . 4
1.2.3Contributions of this thesis . . 5

It is common practice, both in academia and industry, to use various methods
of verification of results, with the aim of increasing society’s confidence in these
results. Indeed, if the proof of a mathematical theorem is understood and ac‑
cepted by its author’s community, it can then be taken for granted and reused
in subsequent researchwork. In an applied environment, engineers can also use
theoretical results in the design of concrete industrial products. The various tests
carried out on these products before they leave the factories are another way to
ensure the confidence of future customers and users. More generally, the goal
of verification is to erase the naturally imperfect aspect of human work, and to
enable each generation to tackle increasingly complex problems, thanks to the
work of the previous generation, which it trusts.

Errare humanum est.1 1: “To err is human.”

Romanmaxim

Unfortunately, despite all the verification procedures in effect, on many occa‑
sions errors have crept into works, whether they bemathematical proofs or com‑
puter programs. On June 4th, 1996, for instance, the ARıANE 5 rocket ended its
maiden flight2 after about thirty secondswith an explosion causedby a computer 2: Flight 501.
bug called integer overflow,3 causing a loss of hundreds ofmillions of euros. More 3: On a machine, numbers are represented

by a binary value of a certain fixed size so
that they can be stored in memory. In this
way, they cannot exceed a certain maximum
value. An integer overflow occurswhen the re‑
sult of an arithmetic operation exceeds this
value. The binary value retained for the num‑
ber then becomes very small, which is often
a source of errors.

recently, in 2018 and 2019,4 two BOEıNG 737‑MAX planes crashed within minutes

4: Flights LıON AıR 610 and ETHıOPıAN AıR‑
LıNEſ 302.

of take‑off because software designed to prevent stalls failed and overrode man‑
ual control. This time, the death toll was extremely high, amounting to several
hundred people.

Software testing shows the presence, not the absence of bugs.

Edgser W. DıJKſTRA (Dutch computer scientist)

The obvious conclusion is that testing, a fortiori carried out by humans, is no
longer enough, and that the time has come for formal verification, i.e., the use
of tools to certify the absence of errors in a mathematical proof or in a computer
program. This is thepromiseof formalmethods, a fieldof research thatprovidesa
theoretical basis for carrying out proofs on computers. In this vein, the end of the
20th century saw the emergence of a family of software called Automated Theo-
remProvers (ATPs). These aredigital implementations of proof search algorithms
in a given logical theory, allowing a human to enter a statement to be proved and
let the computer determine whether it is true or false.

Quis custodiet ipsos custodes? 5 5: “Who watches the watchers?”

JUVENAL (Roman poet)

However, there is still a concern that these provers are not themselves infallible,
since they are derived from code written by humans, and may therefore contain
errors. Interactive Theorem Provers (ITPs), the flagship of formal methods, are
a response to this problem. This family of software is designed around a logical
core, a small amount of code that directly implements the rules of a logical the‑
ory and is trusted by the users. Various tools are made available to the user to
carry out proofs, each proof being eventually verified by the kernel, guarantee‑
ing unfailing confidence at all times in all developments carried out using such

1 Introduction 2

software. Conceptually, it is an optimal trade‑off between human and machine.
Indeed, since a computer is not really capable of producing original reasoning,6 6: Despite the recent impressive results in

this fieldof research,machine learningessen‑
tially consists of compiling and harnessing a
huge amount of information in the best pos‑
sible way. This information may be far more
massive than the knowledge of a single hu‑
man being, but it is not a question of giving
the machine the human traits of originality,
creativity, etc.

this task is left to humans. Yet, the machine excels in themechanical application
of the logical rules of the kernel to check that a proof is correct, whereas a human
could makemistakes.

The price to pay for this additional safety is the interactive nature of these proof
assistants. Indeed, in order to represent highly abstract computer programs and
mathematical theories within a proof assistant and guarantee their versatility,
the underlying logical theory is oftenmuchmore complex than in an automated
theoremprover. Furthermore, inorder tohavea readable and trustworthykernel,
proof assistants do not benefit from the aggressive heuristics and optimisations
present in the code of ATPs. As a result, the user often has to spell out uninterest‑
ing details in the proofs, and any automation becomes an arduous task.

This thesis is part of a research effort towards proof automation, to facilitate the
work of users of proof assistants, the ultimate goal being to spread the use of
these tools in place of software testing, wherever this is possible and relevant.
It therefore lies on the borderline between computer science and mathematics,
and oscillates between theoretical contributions and implementation work, be‑
cause it is important to provide users with tangible tools as quickly as possible.
To place this work in a broad context, in this chapter we briefly retrace the history
of logic (§ 1.1) before presenting proof assistants along with their current level of
automation, as well as the major contributions (§ 1.2).

1.1 A short history of logic

Logic is the study of the formal rules used to determine whether a line of reason‑
ing is valid. This discipline was founded in Antiquity. More recently, it got closer
to mathematics then theoretical computer science, by coming in the shape of
formal logic systems. Finally, with the advent of computers, logic becamemech‑
anised. In this section, we give some details of these different stages.

1.1.1 Historical foundations

In the West, the founding work in the field of logic dates back to ancient Greece.
Indeed, this discipline, then called λογική, held a central place in public life there,
and many concepts still used today in this field come from thinkers of that time,
notably ARıſTOTLE and EUCLıD.

In his Organon, ARıſTOTLE defines the structure of logical reasoning. In this work,
he differentiates between the notions of being and predicate,7 cause and conse- 7: The beings are the entities and the predi-

cates representwhat canbe said about them.quence, or affirmation and negation. He also introduces a logical construction
called syllogism, linking two premises and a conclusion by deduction.8 8: The best‑known syllogism is probably the

following:

– All men are mortal;
– SOCRATEſ is a man;
– Therefore, SOCRATEſ is mortal.

For his part, EUCLıD introduces definitions associated with demonstration, such
as postulates or axioms, unproved hypotheses that are taken as the basis of a
logical system, orpropositionswhichare statements that canbeproved. To these
were added numerous theorems, particularly in geometry and number theory,
to form thework of the Elements, whichwent on to become a veritable academic
reference. In general, until the endof theMiddleAges, logicwas taughtwith these
founding works.

1 Introduction 3

1.1.2 Towardsmathematics and computer science

After centuries of unprecedented scientific advances throughout the world, the
19th century was marked by a quest to formalise logic. Indeed, the aim was to
build a common language for mathematics. In this context, formal languages9 9: Formal languages are defined by a syntax,

i. e., a finite set of symbols that canbeused to
create formulas according to precise and ex‑
plicit rules. These symbols can then be given
a logical interpretation and rules for reason‑
ing can be defined, which are also explicit, so
as to leave no ambiguity when manipulating
the language in this context.

were gradually developed. For example, FREGE introduced in the Ideography [1]

[1]: FREGE (1882), “Begriffsschrift : Eine
der Arithmetischen Nachgebildete Formel‑
sprache des Reinen Denkens”

the concept of quantification10 and the predicate calculus,11 which are still used

10: He introduces two quantifiers:

– the universal quantifier
— “for all 𝑥”;

– the existential quantifier
— “there exists 𝑥”.

11: Also known as first-order logic.

today. PEANO proposed an axiomatisation of arithmetic based on natural num‑
bers [2],whichgavebirth to themathematical induction reasoning taught inmath‑

[2]: PEANO (1889), “Arithmetices principia :
Novamethodo exposita”

ematics nowadays. Finally, CANTOR created set theory [3], whichmade it possible

[3]: CANTOR (1883), “Grundlagen einer
allgemeinen Mannigfaltigkeitslehre. Ein
mathematisch‑philosophischer Versuch in
der Lehre des Unendlichen”

to describe all themathematical objects of his timewithin a common framework.
Logic, although traditionally a discipline close to philosophy, became a branch
of mathematics.

During the 20th century, the theory of formal languages brought programming
languages, used to implement algorithms.12 The rules associated with these lan‑

12: An algorithm is a sequence of operations
to be performed in order to solve a particular
problem.

guages are then computation rules enabling programs to be actually executed
to obtain a result. However, several scientists identified links giving these lan‑
guagesa logical interpretation: this parallel is knownas theCURRY‑HOWARDcorre‑
spondence. This discovery marked a convergence between logic and the emerg‑
ing theoretical computer science.

1.1.3 Mechanisation of logic

The development of computers allowed putting into practice the various formal
systems studied previously. This step heralded a newera for logic andmathemat‑
ics, inwhich humans andmachineswouldwork together. The PROLOG [4] system

[4]: COLMERAUER et al. (1973), “Un système
de communication homme‑machine en
français”

wasborn in the early 1970s. In this programming language, thedeveloper defines
a base of facts and rules for statements to be valid, and the user asks questions to
the system. PROLOG has been used extensively for language processing, but the
ability to reason by induction over numbers and trees also makes it suitable for
processing logical formulas. In this way, the user’s conjectures can be expressed
as queries, the validity of which the system can check by executing them.

Implementations of logical systems also include the family of automated theo‑
rem provers, whose most widespread representative is the SAT13 solver. It re‑ 13: Boolean satisfiability.
ceives as input a formula in propositional logic14 and determines if there exists a 14: Formed from variables and negation,

conjunction or disjunction connectives.valuation15 that makes it true. SAT solvers are very popular because of the wide
15: Assigning a truth value (true or false) to
each variable in the formula.

variety of problems they can represent: planning, electronic circuit design, crypt‑
analysis, etc. By adding symbols and specific behaviour for one ormore theories,
such as arithmetic or bit vectors, we get an SMT16 solver. This extension widens 16: Satisfiability Modulo Theory.
the scope of SAT solvers to program verification problems.

Tools dedicated to certificationof algorithmsandmathematical theoremproving
were subsequently developed, such asmodel checking tools like TLA+ [5]. Such [5]: LAMPORT (1994), “The Temporal Logic of

Actions”software allow users to represent the objects they wish to reason about and to
describe the statements they wish to prove, all in an expressive formal language
closer to natural language. For example, these tools can be used to prove the cor‑
rectness of concurrent and distributed algorithms, or to prove that an automa‑
ton can never be in an invalid state (for example, a lift at a standstill between
two floors). Certain tools such as WHY3 [6] or LıQUıD HAſKELL [7] allow programs [6]: FıLLıÂTRE et al. (2013), “Why3 — Where

Programs Meet Provers”

[7]: VAZOU (2016), Liquid Haskell: Haskell as
a Theorem Prover

to be written in a language from the ML family and the various statements to be
proved directly in the same file. Within this framework, part of the proof burden
is delegated to SMT solvers, offering a certain level of automation, in such a way

1 Introduction 4

that for certain use cases, this family of tools is currently considered to be a good
compromise.

1.2 Proof assistants and automation

Despite the level of automation provided by an SMT solver, these tools are of‑
ten used as black boxes, often unable to explain their reasoning steps. The con‑
fidence that can be placed in these tools therefore remains limited, especially as
errors are sometimes discovered in their highly optimised code yet difficult to up‑
date in a correct way. In themost critical applications, the extra level of reliability
required is provided by proof assistants, software with a more radical approach
but more manual for the user. In this section, we present these different aspects
of proof assistants before listing the major contributions of this thesis.

1.2.1 A rock-solid reliability

Proof assistants, or interactive theorem provers, are software designed to per‑
form proofs based on collaboration between humans and machines. This kind
of software is built around a logical kernel, a small amount of code representing
the rules of the logical system implemented by the proof assistant. This kernel
is the only trusted code base for the user, as it verifies all the proofs performed
in the proof assistant. Each proof validated by the kernel can then be used in
other proofs, making it possible to progressively build entire libraries of proofs in
a given domain.

Proof assistants can be based on a wide range of logical systems. For example,
the IſABELLE/HOL [8] proof assistant is based on higher‑order logic. In this thesis, [8]: NıPKOW et al. (2002), Isabelle/HOL: a

proof assistant for higher-order logicwe are interested in a family of proof assistants based on type theory, an expres‑
sive language, result of a thorough exploitation of the CURRY‑HOWARD correspon‑
dence, used to programme, express the statements to be proved, and carry out
the proofs, all in one. Examples of software in this family are AGDA [9], LEAN [10] [9]: NORELL (2008), “Dependently Typed Pro‑

gramming in Agda”

[10]: DE MOURA et al. (2021), “The Lean 4 The‑
orem Prover and Programming Language”

and COQ [11], the proof assistant on which this work is based. In this framework,

[11]: The Coq Development Team (2022), The
Coq Proof Assistant

proofs are represented by proof terms, and the kernel actually checks them by
calling the typechecker17 of the underlying language.

17: On a computer, all values are repre‑
sented in binary. However, it would be im‑
practical to write complex programmes that
only manipulate numbers. In order to raise
the level of abstraction, many programming
languages encode various data structures in
binary while offering the developer a way of
manipulating them in a different way than
numbers, by giving them a type. One can
then manipulate strings of characters, lists,
etc. Typed languages are then equippedwith
a typechecker to validate that the operations
associated with one type are not used on a
value of another type,whichwould cause the
programme to lose its meaning.

1.2.2 Still highlymanual proofs

The downside of this level of confidence is that proofs once again become man‑
ual, as the proof assistant requires all the steps in a proof to bemade explicit by a
proof term. However, although the language in the COQ proof assistant is very
expressive, it is still very different from the natural language used by humans,
and it is difficult for a user to enter proof terms into the software by hand. More‑
over, some proof steps need to bemade explicit without being interesting for the
user. For example, explaining to the proof assistantmathematicalmanipulations
that are trivial on paper, such as commutativity of addition,18 takes a substantial

18: 𝑎 + 𝑏 = 𝑏 + 𝑎.

amount of time and slows down the user’s proof work.

In order to solve these problems, the piece of software provides a toolbox bring‑
ing its formal language closer to the natural language used in paper proofs. In
particular, these tools include inference functions, whereby the user can supply

1 Introduction 5

incomplete terms and let the machine determine the missing pieces. For exam‑
ple, the user does not need to make explicit the types of all the values, and the
proof assistant candefine notations so that the terms enteredby the user are sim‑
ilar to the notations they would use in a paper proof. In addition, proof automa‑
tion tools are made available to the user to prove in a few commands a specific
class of statements corresponding to the stages of the proof on which an expert
mathematician does not wish to spend most of his time. These tools are what
make such a piece software a real proof assistant.

1.2.3 Contributions of this thesis

Proof mechanisation is only possible if automation solutions aremade available.
One possible approach is to link proof assistants to automated theorem provers,
widelyused in formalmethods, inorder to facilitate theproofof statementswithin
their reach. However, this requires formulas used on both sides to correspond to
each other, aligning logic, data types, operations, etc. More generally, the prob‑
lem of proof transfer, on the scale of a single logical formalism, is the problem
of expressing the same mathematical concept in several different ways, without
any impact on the proofs, i.e., when a proof has been carried out using a repre‑
sentation of a mathematical concept within the proof assistant, we do not want
tohave to redo this proofmanually using another representationof the samecon‑
cept. With the aim of solving an instance of the proof transfer problem in the COQ
proof assistant, we propose TRAKT [12], a preprocessing tool for COQ statements, [12]: BLOT et al. (2023), “Compositional pre‑

processing for automated reasoning in de‑
pendent type theory”

that makes the statements of a given theory converge to a canonical form in the
ideal format expected by a proof automation tool for this theory.

Otherpropertiesof the formal languagesused inproofassistants canbeexploited
for proof transfer, such as parametricity [13]. It is an interpretation of types as re‑ [13]: REYNOLDſ (1983), “Types, Abstraction

and Parametric Polymorphism”lations, enabling to build tools that link aCOQ statementwith an associated state‑
ment that is the target of the proof transfer. In rich versions of parametricity, such
as univalent parametricity [14], one can extract a proof term from the witness19 [14]: TABAREAU et al. (2021), “Themarriage of

univalence and parametricity”

19: Thewitness of a relation𝑅 between two
values 𝑎 and 𝑏 is a proof that these two val‑
ues are linked in the relation, i. e., a proof of
𝑅 𝑎 𝑏.

of the relationbetweenboth statements, and exploit it to concretely carry out the
proof transfer. However, univalent parametricity introduces axioms into COQ in
order to work correctly, including cases in which a manual processing using no
axioms would be possible. We then present TROCQ [15], a second proof transfer

[15]: COHEN et al. (2024), “Trocq: Proof Trans‑
fer for Free, With or Without Univalence”

plugin for COQ,more general than TRAKT, aiming tomatch the power of univalent
parametricity in as many cases as possible, while analysing the statement more
finely and using axioms in a smaller number of cases.

These two tools take the form of plugins for the COQ proof assistant. As such,
they rely on particular meta‑programming techniques and their implementation
raises specific questions independent of their theoretical design. The chosen
meta‑language for these implementations is COQ‑ELPı [16], a logic programming [16]: TAſſı (2018), “Elpi: an extension lan‑

guage for Coq (Metaprogramming Coq in the
Elpi 𝜆Prolog dialect)”

language that offers a high level of abstraction in themanipulation of COQ terms.

The remainder of this thesis is organised in four parts: a technical introduction
defining the various concepts handled in the subsequent parts (§ I), a presenta‑
tion of both prototypes of preprocessing tools developed, TRAKT (§ II) then TROCQ
(§ III), as well as a section dedicated to implementation issues (§ IV).

THECOQ PROOFASSISTANT:
THEORYANDPRACTICE

Introduction

Formalmethods are amajor tool to increase the level of confidence that one can
put in computer programs. By introducing rigorous reasoning, theyprovidemore
guarantees than more traditional software quality assurance methods such as
software testing, and are very popular in the development of critical software. Of
the many formal tools available, those with the most radical approach are proof
assistants, because in such software, the proofs themselves are guaranteed to be
formally correct. At thepriceof trustinga logical kernelmadeupof a fewhundred
lines of code implementing the logical system at the heart of the proof assistant,
such software can then be used to check the compliance of programswith a spec‑
ification or the validity of a mathematical proof.

Within a proof assistant, a programming language is used to describe the math‑
ematical objects on which we wish to reason20 and a proof language is used to 20: For example, a computer program is rep‑

resented by an abstract syntax tree obtained
from its source code.

prove, step by step, statements expressed using the various data structures de‑
fined beforehand. This thesis focuses on the COQ [11] proof assistant, developed

[11]: The Coq Development Team (2022), The
Coq Proof Assistantin France in the 1980s. In this piece of software, the expressiveness of the pro‑

gramming language used is such that it is also possible to carry out proofs in this
same language, including verification of proofs in the typechecker. This expres‑
siveness is a real advantage for the user, first because they only have a single lan‑
guage to trust, but also because it is possible to represent very abstract mathe‑
matical objects in COQ and to reason about the associated theories, which is not
the case of all formal tools. However, this expressivenessmakes proofs very diffi‑
cult to carry out, as they are represented with proof terms in this very advanced
language, whose very high level of abstraction in programming tasks becomes a
very low level of abstraction in the elaboration of proofs.

Proof automation in COQ is therefore the motivation behind numerous research
projects in computer science. Their main aim is to build a layer of abstraction
above the programming language of COQ, so that the user does not have to write
proofs manually in this language. The proof assistant then has a tactic language
allowing the proof to make progress step by step, by executing actions that are
intuitive for the user and authorised by COQ following verification of a fragment
of the final proof term, provided by the tactic. These tactics stepping from one
proof state to another are implemented at the meta level, using one of the meta‑
languages available in COQ.

Some tactics implement a decision procedure, i.e., an algorithm able to decide
whether a statement contained in a theory is true or false, by automatically con‑
structing the associated proof term. For example, the lia [17] tactic can auto‑ [17]: BEſſON (2006), “Fast Reflexive Arith‑

metic Tactics the Linear Case and Beyond”matically prove a true statement that belongs to the theory of PREſBURGER arith‑
metic. Other tactics reformulate the statement to prove, in order to make it sim‑
pler to provemanually ormore suitable for other automation tactics. Among the
latter are proof transfer tools, that allow proofs or statements expressed using
one encoding of a mathematical object to be reformulated using another encod‑
ing of the same object, that the user deems more suitable for the proof they are
currently performing. Proof transfer is another kind of abstraction in proofs, al‑
lowing to erase the differences inherent in the fact of encoding the same mathe‑
matical object in several different ways in a proof assistant.

Themain contributions of this thesis are thedesignof twopreprocessing tools for
COQ statements, each responding from a specific angle to the problem of proof

8

transfer. This part provides the technical definitions needed to follow the de‑
tailed presentation of these tools. We present the COQ proof assistant, the real
proof assistance features it implements, as well as the COQ meta‑programming
plugin used throughout this thesis, COQ‑ELPı [16]. [16]: TAſſı (2018), “Elpi: an extension lan‑

guage for Coq (Metaprogramming Coq in the
Elpi 𝜆Prolog dialect)”

A short primer
to the COQ proof assistant 2

2.1 Types for proofs and programs 9
2.1.1 The pure 𝜆‑calculus 9
2.1.2 Simple types and the CURRY‑

HOWARD correspondence . . . 10
2.1.3 The Calculus of Constructions 13
2.2 An expressive programming

language 14
2.2.1 Universes and polymorphism . 14
2.2.2 Inductive types 16

In this chapter, we briefly present the language of COQ in order to introduce the
concepts we refer to in the rest of this manuscript. We first present in a gradual
way the core of the type theory implemented by the kernel and the associated
logical theory (§ 2.1), then we present the features COQ adds on top of this theo‑
retical basis (§ 2.2).

2.1 Types for proofs andprograms

Theproof assistantCOQ isbuilt aroundakernelwhoseessential component is the
typechecker of a dependently‑typed𝜆‑calculus. This piece of software allows the
user to declare custom types called inductive types, with which they can repre‑
sent the mathematical objects they wish to reason about. The language of COQ
can also be interpreted as a logical system, making it a proof language. This sec‑
tion studies these different aspects.

2.1.1 The pure𝜆-calculus

Introduced in the 1930s by CHURCH [18], 𝜆‑calculus is aminimalist programming [18]: CHURCH (1933), “A set of postulates for
the foundation of logic”languagewhose syntax defines only three classes of terms: variable, abstraction,

application.
𝑡, 𝑢 ∶∶= 𝑥 | 𝜆𝑥. 𝑡 | 𝑡 𝑢

The base object of such a language is the function, represented by the case of the
abstraction 𝜆𝑥. 𝑡 where 𝑥 is a bound variable1 and 𝑡 is the body of the function. 1: A bound variable, as opposed to free vari‑

ables, only has meaning inside a function. It
is used to represent the future argument that
will potentially begiven to this functionwhen
it is applied, by binding this argument to a
name.

Whatmakes this language a calculus is the 𝛽‑reduction rule, that allows comput‑
ing the application of a function to an argument2 by substituting the argument

2: Such a term is called a 𝛽‑redex.

for the function’s bound variable:

(𝜆𝑥. 𝑡) 𝑢 ⇝ 𝑡[𝑥 ∶= 𝑢]

Substitution is defined in such away as to avoid capture— the fact that a variable
that is free before substitution becomes bound after substitution—as this would
give a term with a different meaning from the expected term. Two 𝜆‑terms that
differ only in the name of their bound variables have the same behaviour with
respect to 𝛽‑reduction. They are then said to be 𝛼‑equivalent. We can define
an equivalence between terms called conversion3 by the transitive symmetrical 3: We denote 𝑡 ≡ 𝑢 for “𝑡 is convertible to

𝑢”.reflexive closure of 𝛽‑reduction and 𝛼‑equivalence.

Many programming concepts can be encoded using 𝜆‑terms: integers, booleans,
pairs, lists, trees, etc. It is even possible to encode recursion using fixed‑point
combinators, like the 𝑌 combinator:

𝑌 ∶= 𝜆𝑓. (𝜆𝑥. 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥))

Indeed, 𝑌 𝑓 reduces to 𝑓 (𝑌 𝑓), then 𝑓 (𝑓 (𝑌 𝑓)), and so on indefinitely. It is in
fact possible to encode any TURıNG‑computable program in a 𝜆‑term.4 4: TURıNG‑computability of a program corre‑

sponds to the possibility to encode it on a
TURıNGmachine. TURıNG himself proved that
𝜆‑calculus is equivalent to his machine [19],
i. e., that it is TURıNG‑complete.

2 A short primer to the COQ proof assistant 10

Reducing a term is done by applying the 𝛽‑reduction rule as much as possible in
this term. The path taken while reducing the term is thus not necessarily unique.
If a reduction path arrives to a term containing nomore redex, i.e., it cannot be𝛽‑
reduced further, this final term is said to be a 𝛽‑normal form. The property called
normalisation is the existence of a normal form for any term in the calculus.5 As 5: If all the reduction paths lead to a normal

form, the calculus respects the property of
strong normalisation.

the 𝑌 combinator shows, 𝜆‑calculus does not respect this property because it
allows encoding general recursion, i.e., arbitrary loops.

2.1.2 Simple types and the CURRY-HOWARD correspondence

In order to obtain several interesting properties, including normalisation, we can
restrict the set of terms that can be defined in 𝜆‑calculus. We then introduce
types [20], i.e., annotations on terms, with typing rules enabling us to infer or [20]: CHURCH (1940), “A formulation of the

simple theory of types”verify these types, and by extension to describe the terms we wish to authorise
in the calculation, an ill‑typed term being rejected.

Definition of simply-typed 𝜆-calculus The function being the base object of 𝜆‑
calculus, a type is defined as either a variable 𝛼 belonging to a finite set of base
types, or a functional type from a domain to a codomain using an arrow:

𝜏 ∶∶= 𝛼 | 𝜏 → 𝜏

Then, we annotate functions by adding a type to their bound variable:

𝑡, 𝑢 ∶∶= 𝑥 | 𝜆𝑥 ∶ 𝜏. 𝑡 | 𝑡 𝑢

A term can only be well typed in a typing context, i.e., a list of associations be‑
tween variables and types:

Γ ∶∶= ⟨⟩ | Γ, 𝑥 ∶ 𝜏

A typing judgment Γ ⊢ 𝑡 ∶ 𝜏 asserts that term 𝑡 has type 𝜏 in context Γ. In order
to obtain a typing judgment on a term 𝑡, one composes typing rules together by
induction on the syntax of 𝑡, building a typing derivationwhose conclusion is the
typing judgment on term 𝑡. The typing rules for this calculus called simply-typed
𝜆‑calculus and denoted 𝜆→ are then the following:

𝑥 ∶ 𝜏 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝜏 (VAR→) Γ, 𝑥 ∶ 𝜏 ⊢ 𝑡 ∶ 𝜏 ′

Γ ⊢ 𝜆𝑥 ∶ 𝜏. 𝑡 ∶ 𝜏 → 𝜏 ′ (LAM→)

Γ ⊢ 𝑡 ∶ 𝜏 → 𝜏 ′ Γ ⊢ 𝑢 ∶ 𝜏
Γ ⊢ 𝑡 𝑢 ∶ 𝜏 ′ (APP→)

Figure 2.1: Typing rules for 𝜆→

The 𝜆→ calculus canbeused towrite sensible programswhose results canbeob‑
tainedby computing their normal form. For example, one can add to the calculus
a base type ℕ to represent natural numbers, as well as two constants 0 ∶ ℕ and
𝑆 ∶ ℕ → ℕ to represent zero and the successor, i.e., the base components of
PEANO arithmetic. By using these values, one can then build programs manipu‑
lating natural numbers.

2 A short primer to the COQ proof assistant 11

The CURRY-HOWARD correspondence By associating the arrow → of the func‑
tional typewith logical implication, simply‑typed𝜆‑calculusactually corresponds
to the logical system of natural deduction. This crucial link between logic and
programming is called the CURRY‑HOWARD correspondence. Indeed, by consider‑
ing base types as propositional variables, simple types canbe seen as statements
and typing rules as rules of the associated logical system. The typing context cor‑
responds to a set of hypotheses, with free variables and constants being axioms
— properties considered as proved before any demonstration begins. The VAR→
rule describes the case of hypotheses: if a property is in the context, then it is
provable. The LAM→ rule makes it possible to introduce an implication by noting
that if 𝜏 ′ is provable from a proof of 𝜏 in a context, then in this context 𝜏 im‑
plies 𝜏 ′. Furthermore, the APP→ rule is the famous logical rule ofmodus ponens:
if proposition 𝜏 is provable and 𝜏 implies 𝜏 ′, then 𝜏 ′ is also provable. If we aug‑
ment 𝜆→ with additional constructions such as theproduct6 or the sum,7 wecan 6: The product type allows us to represent

pairs of values. A value of type 𝐴 × 𝐵 is
the combination of a value of type 𝐴 with
a value of type 𝐵. This is the basic building
block for representing the concept of tuple
present inmanyprogramming languages in a
theoretical way. Its constructor is the follow‑
ing:

(⋅ , ⋅) ∶ 𝐴 → 𝐵 → 𝐴 × 𝐵

7: The sum 𝐴 + 𝐵 is a construct that con‑
tains a value of one type from two possibil‑
ities 𝐴 and 𝐵. In languages with algebraic
types, it is used to perform case analyses, for
example between a valid result and an error
— result in OCAML, Either in HAſKELL, etc.
Traditionally, a sum is constructed by one of
the following constants:

inl ∶ 𝐴 → 𝐴 + 𝐵
inr ∶ 𝐵 → 𝐴 + 𝐵

extend the correspondence topropositional calculus. Indeed, a type 𝜏1 × 𝜏2 cor‑
responds to a conjunction of two propositions, and a type 𝜏1 + 𝜏2 corresponds
to a disjunction. Finally, false — also denoted as ⊥ — is associated to what can‑
not be proved, i.e., types without any inhabitants.

Moreover, this correspondencebetweenstatementsand types is alsoacorrespon‑
dence between proofs and programs. In a function 𝜆𝑥 ∶ 𝜏. 𝑡 of type 𝜏 → 𝜏 ′ that
constructs an inhabitant of 𝜏 ′ from an inhabitant of 𝜏 , the terms 𝑥 and 𝑡 are
therefore proof terms. A proved statement corresponds to the existence of a term
that inhabits the type of this statement. The constants added to the global con‑
text are then axioms. In fact, a constant 𝑘 ∶ 𝜏 is a variable 𝑘 that we assume
inhabits the type 𝜏 . The statement corresponding to 𝜏 is therefore proved, but
by a witness that has no computational content. The analogy naturally extends
to other constructions. Thus, a term that inhabits a product type 𝜏1 × 𝜏2 is a
pair of proofs (𝑡1, 𝑡2) where 𝑡1 is a proof of 𝜏1 and 𝑡2 is a proof of 𝜏2, and a
term that inhabits a sum type 𝜏1 + 𝜏2 is either inl 𝑡1 where 𝑡1 is a proof of 𝜏1,
or inr 𝑡2 where 𝑡2 is a proof of 𝜏2.

The BARENDREGT cube Simply‑typed 𝜆‑calculus is the starting point of a hand‑
ful of generalisations. Indeed, it benefits fromanumber of interesting properties,
including preservation of typing by reduction,8 uniqueness of typing, and logical 8: If a term 𝑡 ∶ 𝜏 reduces to a term 𝑡′, then

𝑡′ ∶ 𝜏 — also called subject reduction.consistency.9 In particular, its type system rejects any terms whose reduction
9: It is impossible to prove ⊥ in the logical
system from an empty context.

does not terminate, such as fixed‑point combinators. For instance, the definition
of the 𝑌 combinator applies a subterm 𝑥 to itself, which is impossible in 𝜆→ ,
as 𝑥 cannot have both a functional type 𝜏 → 𝜏 ′ and the type of its domain 𝜏 .
However, it lacks the expressiveness of pure 𝜆‑calculus. For example, in pure 𝜆‑
calculus, the term 𝜆𝑥. 𝑥 represents the identity function, and can be applied to
any term. In simply‑typed𝜆‑calculus, every function is defined over a single type.
If we want to apply it to terms of different types, we need to build a distinct in‑
stance of identity for each type used. Various extensions of 𝜆→ were designed
in the second half of the 20th century, with the goal of obtaining a more expres‑
sive programming languageor logical system, bothpoints of viewbeing available
thanks to the CURRY‑HOWARD isomorphism.

In 1991, BARENDREGT [21] proposed to represent these extensions as the edges of [21]: BARENDREGT (1991), “Introduction to
generalized type systems”acube10 taking 𝜆→ as its origin and introducingadifferent formof abstractionon

10: Thus called𝜆‑cube or BARENDREGT cube.each axis. These forms of abstraction can be described using the concept of sort,
i.e., the type of a type. We introduce the ⋆ sort — called type—and declare that
all simple types have ⋆ as their sort. For example, ℕ ∶ ⋆ and ℕ → ℕ ∶ ⋆. This
gives us a way to characterise more abstract constructions. For example, a term

2 A short primer to the COQ proof assistant 12

<latexit sha1_base64="JATnDCqeFN3ATggr61jiatZEozU=">AAAD1HicjVLLbtNAFD2peZTwSmEJC4sICSRk2UmTmF0FC9ggBWjSSk0V2c40teoXY7tVZLIBseU72MLf8AfwF5yZOlVZtDCW7XvPPffMvXfGz6IwL2z7Z2PNuHL12vX1G82bt27fudvauDfO01IGYhSkUSp3fS8XUZiIUREWkdjNpPBiPxI7/tFLFd85FjIP02S7WGRiP/bmSXgQBl5BaNp6OIlInnnTalImMyGVTjVJYzH3lstpq21bbvd5x+mbtjVwbZo0+gO757qmY9l6tVGvYbrRGGKCGVIEKBFDIEFBO4KHnM8eHNjIiO2jIiZphTousESTuSVZggyP6BG/c3p7NZrQV5q5zg64S8RXMtPEY+ak5EnaajdTx0utrNCLtCutqWpb8O/XWjHRAodE/5W3Yv5vnuqlwAFc3UPInjKNqO6CWqXUU1GVm+e6KqiQEVP2jHFJO9CZqzmbOifXvavZejr+SzMVqvyg5pb4fWl3OTmxVlnwnV1yOhXeUPF9PT91JqddmGfTMM+mq6KqkifMs5ht4ZmOfqBySH/O+EJXKvmkOGHsKXdu6lslODc1MXHu7CvyBe1Is5f03+EVXmirgx663MHhtDf572IAdadXF9e82Bh3LKdv9d5utre269u9jgd4xModqmzhNYYYsY5P+Ibv+GGMjY/GZ+PLKXWtUefcx1/L+PoHQDfHuw==</latexit>

�!

<latexit sha1_base64="YPPTR56RPOPyrFJaTuVoKYEsC3Y=">AAADwXicjVLbbtNAED2puZRwa+GRF4sICSRk2UmTuG8VfYAXpABNWymtKsfZBqu+sbaLIiufwSt8F38Af8HZqVOVhxbWsj1z5szZmdmd5nFUlK77s7Vm3bp95+76vfb9Bw8fPd7YfLJfZJUO1TjM4kwfToNCxVGqxmVUxuow1ypIprE6mJ7tmvjBudJFlKV75SJXx0kwT6PTKAxKQpOjmNRZcFKPlicbHdfxe9tdb2C7ztB3adIYDN2+79ue48rqoFmjbLM1whFmyBCiQgKFFCXtGAEKPhN4cJETO0ZNTNOKJK6wRJu5FVmKjIDoGb9zepMGTekbzUKyQ+4S89XMtPGCORl5mrbZzZZ4JcoGvU67Fk1T24L/aaOVEC3xmei/8lbM/80zvZQ4hS89ROwpF8R0FzYqlUzFVG5f6aqkQk7M2DPGNe1QMldztiWnkN7NbAOJ/xKmQY0fNtwKv2/sriAnEZUF39kNp1PjPRU/NfMzZ3LRhX05DftyuiZqKnnJPIfZDl5L9AuVI/pzxhdSqeaT4Stjr7hzW26V4tzMxNSVs6/JV7RjYS/pf8RbvBGriz563MHjtLf472EIc6dXF9e+3tjvOt7A6X/Y6uzsNbd7Hc/wnJV7VNnBO4wwljq+4Tt+WLtWZOWWvqCutZqcp/hrWfUflCu/sQ==</latexit>

�P

<latexit sha1_base64="dcpzcqIZTpI66t/sFYzm7X+0aY0=">AAADwXicjVLbbtNAED2puZRwa+GRF4sICSRk2UmTmLeKPMALUoCmrZRWle1sw6qObXwBRVY+g1f4Lv4A/oKzU6cqDy2sZXvmzJmzM7MbZrEuStf92dqwbty8dXvzTvvuvfsPHm5tP9ov0iqP1CRK4zQ/DINCxTpRk1KXsTrMchUswlgdhGcjEz/4ovJCp8leuczU8SKYJ/pUR0FJaHoUkzoLTurR6mSr4zp+71XXG9iuM/RdmjQGQ7fv+7bnuLI6aNY43W6NcYQZUkSosIBCgpJ2jAAFnyk8uMiIHaMmltPSEldYoc3ciixFRkD0jN85vWmDJvSNZiHZEXeJ+ebMtPGMOSl5OW2zmy3xSpQNepV2LZqmtiX/YaO1IFriE9F/5a2Z/5tneilxCl960OwpE8R0FzUqlUzFVG5f6qqkQkbM2DPGc9qRZK7nbEtOIb2b2QYS/yVMgxo/argVfl/bXUHOQlSWfGfXnE6Nd1T82MzPnMl5F/bFNOyL6ZqoqeQ58xxmO3gp0c9U1vTnjC+l0pxPiq+MveDObblVinMzE1OXzr4mX9GOhb2i/wFv8FqsLvrocQeP097hv4chzJ1eX1z7amO/63gDp/9+p7O719zuTTzBU1buUWUXbzHGROr4hu/4YY0sbWVWfk7daDU5j/HXsuo/aOe/pA==</latexit>

�C

<latexit sha1_base64="1qh1TrSfl7gQwrXQ3ZhmqelK010=">AAADwXicjVLbbtNAED2puZRwa+GRF4sICSRk2UmTuG8VfYAXpABNWymtKsfZBqu+sbaLIiufwSt8F38Af8HZqVOVhxbWsj1z5szZmdmd5nFUlK77s7Vm3bp95+76vfb9Bw8fPd7YfLJfZJUO1TjM4kwfToNCxVGqxmVUxuow1ypIprE6mJ7tmvjBudJFlKV75SJXx0kwT6PTKAxKQpOjmNRZcFJ3lycbHdfxe9tdb2C7ztB3adIYDN2+79ue48rqoFmjbLM1whFmyBCiQgKFFCXtGAEKPhN4cJETO0ZNTNOKJK6wRJu5FVmKjIDoGb9zepMGTekbzUKyQ+4S89XMtPGCORl5mrbZzZZ4JcoGvU67Fk1T24L/aaOVEC3xmei/8lbM/80zvZQ4hS89ROwpF8R0FzYqlUzFVG5f6aqkQk7M2DPGNe1QMldztiWnkN7NbAOJ/xKmQY0fNtwKv2/sriAnEZUF39kNp1PjPRU/NfMzZ3LRhX05DftyuiZqKnnJPIfZDl5L9AuVI/pzxhdSqeaT4Stjr7hzW26V4tzMxNSVs6/JV7RjYS/pf8RbvBGriz563MHjtLf472EIc6dXF9e+3tjvOt7A6X/Y6uzsNbd7Hc/wnJV7VNnBO4wwljq+4Tt+WLtWZOWWvqCutZqcp/hrWfUfMFO/kw==</latexit>

�2

<latexit sha1_base64="44IC9V1yOQGCYkwgcF3uiYq8Q4o=">AAADw3icjVLbbtNAED2puZRwa+GRF4sICSRk2UmTmLcKhOAFKUDTVmqiyna2qRXful6DIivfwSt8Fn8Af8HZrVOVhxbWsj1z5szZmdkNiyQulev+bG1YN27eur15p3333v0HD7e2H+2XeSUjMY7yJJeHYVCKJM7EWMUqEYeFFEEaJuIgXLzR8YMvQpZxnu2pZSGmaTDP4pM4ChSh6SQhdRYc1xOVr463Oq7j9151vYHtOkPfpUljMHT7vm97jmtWB80a5dutESaYIUeECikEMijaCQKUfI7gwUVBbIqamKQVm7jACm3mVmQJMgKiC37n9I4aNKOvNUuTHXGXhK9kpo1nzMnJk7T1braJV0ZZo1dp10ZT17bkP2y0UqIKp0T/lbdm/m+e7kXhBL7pIWZPhUF0d1GjUpmp6MrtS10pKhTEtD1jXNKOTOZ6zrbJKU3veraBif8yTI1qP2q4FX5f211JTmpUlnxn15xOjQ9U/NzMT5/JeRf2xTTsi+nqqK7kOfMcZjt4aaJnVI7pzxlfmkolnxxfGXvBndvmVgnOTU9MXDr7mnxBOzHsFf1PeIfXxuqijx538DjtHf57GELf6fXFta829ruON3D6H3c6u3vN7d7EEzxl5R5VdvEeI4xZxxm+4Tt+WG+thSUtdU7daDU5j/HXslZ/AAW9wLQ=</latexit>

�→ Figure 2.2: The BARENDREGT cube.

constructing a type from another type would have sort ⋆ → ⋆. We introduce the
□ sort— called kind—as the sort of all sorts. For example, ⋆ ∶ □, ⋆ → ⋆ ∶ □ and
ℕ → ⋆ ∶ □. We then identify the different forms of abstraction of a 𝜆‑calculus by
allowing one or more of the following classes of functional types in the calculus,
defined by a pair of symbols chosen from ⋆ and □, representing the sort of the
domain and codomain of the authorised functional type:

– Class (⋆, ⋆) describes terms that depend on terms. For example, this is
the case for the addition of the natural numbers +ℕ ∶ ℕ → ℕ → ℕ. This
class of terms is definable in 𝜆→ and all its extensions.

– Class (□,□), authorised in calculus 𝜆𝜔 and its extensions, describes the
types that depend on types. These are type constructors. For example,
we can imagine a term list used to describe the type of a list when it is
provided with the type of the elements in the list. Thus, list ℕ is the type
of lists of natural numbers.

– Class (□, ⋆) , authorised incalculus 𝜆2 and itsextensions, describes terms
that depend on types. These are constructors of terms belonging to poly‑
morphic types. For example, we can imagine a constant cons that adds
an element to a list. This constant depends on the type of the elements in
the list.

– Class (⋆,□) , authorised incalculus 𝜆𝑃 and itsextensions, describes types
thatdependon terms. This abstraction is thatofdependent types, the least
common in functional programming languages. It can be used, for exam‑
ple, to construct a fixed‑length integer array type using a constant narray
that depends on an integer 𝑛 describing the size of the arrays that will
have type narray 𝑛.

All these abstractions can then be represented on three axes using a cube illus‑
trated on Figure 2.2.11 By generalising this cube to calculi with more than two 11: We represent on the cube only the lan‑

guages cited here.sorts, we obtain the family of Pure Type Systems [22, 23].
[22]: BERARDı (1988), “Towards a mathemat‑
ical analysis of the Coquand‑Huet calculus
of constructions and the other systems in
Barendregt’s cube”

[23]: TERLOUW (1989), “Een nadere bewijsthe‑
oretische analyse van GSTT’s”

Each form of abstraction adds expressiveness to the language but potentially
weakens its theoretical guarantees. Functional languages that have been con‑
cretely implemented and are used at an industrial level, such as HAſKELL, can
hardly be placed on the cube, as their type system includes numerous pragmatic
features that either do not necessarily correspond to an end of the cube — Gen‑
eralised Algebraic Data Types (GADT), HıNDLEY‑MıLNER‑style polymorphism, etc.
— or stray away from a logical interpretation — non‑termination. However, their
theoretical basis is a restriction of 𝜆2 , preserving decidability of typing and com‑
plete inference for practical purposes. As for the COQ proof assistant, it contains
an implementation of the language corresponding to the point of the cube lo‑

2 A short primer to the COQ proof assistant 13

cated furthest from the origin, 𝜆𝐶 or the Calculus of Constructions (CoC)12 [24]. 12: Abbreviation partly responsible for the
name of this proof assistant.
[24]: COQUAND et al. (1986), “The calculus of
constructions”

It therefore has all the abstractions described previously, while retaining a con‑
sistent logical interpretation, that of the intuitionistic predicate calculus.

2.1.3 The Calculus of Constructions

The syntax of the Calculus of Constructions adds two constructions to that of
simply‑typed 𝜆‑calculus, the dependent product or Π‑type and the universe:

𝐴, 𝐵, 𝑡, 𝑢 ∶∶= 𝑥 | 𝜆𝑥 ∶ 𝐴. 𝑡 | 𝑡 𝑢 | Π𝑥 ∶ 𝐴. 𝐵 | □

Dependentproduct Thedependentproduct isused todescribedependent func‑
tional types. Indeed, in the 𝐴 → 𝐵 arrow type of simply‑typed 𝜆‑calculus, the
codomain 𝐵 does not itself depend on domain 𝐴 , these terms being both de‑
finedoutside this functional type. Inadependent𝜆‑calculus,weuseadependent
product Π𝑥 ∶ 𝐴. 𝐵 which is a binder in the same way as an abstraction. Thus,
just as the body 𝑡 of a function 𝜆𝑥. 𝑡 is defined as a function of the argument
𝑥 that will be supplied to it when it is applied, the codomain 𝐵 of a dependent
product can depend on the bound variable 𝑥 over which it quantifies.13 Indeed, 13: When 𝐵 does not depend on 𝑥, naming

the variable is unnecessary, and we can use
notation 𝐴 → 𝐵 as syntactic sugar for:

Π_ ∶ 𝐴. 𝐵

the logical interpretation of the dependent product is universal quantification.
For example, if we denote as narray 𝑛 an array of natural numbers of size 𝑛 ,
the term constructing an array of size 𝑛 by repeating a given value has type:

nreplicate ∶ Π𝑛 ∶ ℕ. ℕ → narray 𝑛

The nreplicate term therefore has type ℕ → narray 𝑛 for all integer 𝑛 sup‑
plied as the first parameter. The term nreplicate 4 0 represents an array of
type narray 4 filled with zeros, ⟨0, 0, 0, 0⟩. This quantifier takes on its full log‑
ical meaning when used in the type of properties to prove:

natpos ∶ Π𝑛 ∶ ℕ. 𝑛 ≥ 0

Universesanduniversehierarchy Note that types are no longer a syntactic cate‑
gory in their own right, but terms like any others, and as such canbemanipulated
as first‑class values in the language. This is a featureof languageswithdependent
types. Because they are terms like any others, it must be possible to write types
to the leftof a typing judgment. This is the reason for the existenceof theuniverse
□, which is a sort, i.e., the type of types. In this way, we can generalise the array
type narray and the associated function nreplicate to polymorphic arrays:

array ∶ □ → ℕ → □
replicate ∶ Π𝐴 ∶ □. Π𝑛 ∶ ℕ. 𝐴 → array𝐴 𝑛

As the types of a dependent𝜆‑calculus are also terms, the □ sort can itself be on
the left of a typing judgment. However, allowing □ ∶ □ breaks the logical con‑
sistency of the theory: this is the GıRARD paradox [25], the type‑theoretic equiva‑ [25]: GıRARD (1972), “Interprétation fonc‑

tionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur”

lent of the RUſſELL paradox14 of set theory, according to which there can be no

14: RUſſELL initially explained the paradox
in a letter sent to FREGE in 1902. Later, FREGE
published the contents of the letter [26].

set containing all sets. One solution is to use an augmented version of the Calcu‑
lus of Constructions called𝐶𝐶𝜔, in which every universe □𝑖 is annotated with a
natural number 𝑖 representing its level.15 We can thus safely postulate that each

15: In the rest of this thesis, for the sake of
readability, when a universe level is not im‑
portant in the discourse, we shall leave it im‑
plicit and write □.

2 A short primer to the COQ proof assistant 14

universe is included in the next one, hence the name of universe hierarchy:

Γ ⊢ □𝑖 ∶ □𝑖+1

Typing rules The typing rules for 𝐶𝐶𝜔 are available in Figure 2.3. The LAM rule
differs from its simply‑typed version in that the type of 𝑡 can now depend on
variable 𝑥, so the abstraction is typed by a dependent product. For the same
reason, the APP rule now performs a substitution in the type of an application, in
order to instantiate the bound variable 𝑥 in the codomain 𝐵.

Γ ⊢ □𝑖 ∶ □𝑖+1
(SORT) 𝑥 ∶ 𝐴 ∈ Γ

Γ ⊢ 𝑥 ∶ 𝐴 (VAR)

Γ ⊢ 𝐴 ∶ □ Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵 (LAM)

Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 𝑢 ∶ 𝐵[𝑥 ∶= 𝑢] (APP)

Γ ⊢ 𝐴 ∶ □𝑖 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ □𝑗
Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ □max(𝑖,𝑗)

(Pı) Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑡 ∶ 𝐵 (CONV)

Figure 2.3: Typing rules for 𝐶𝐶𝜔

2.2 An expressive programming language

Several proof assistants, such as COQ or LEAN, are based on close variants of the
Calculus of Constructions, but make different choices regarding the details of
their underlying formalism. This section details the major choices implemented
in COQ concerning universes and inductive types.

2.2.1 Universes andpolymorphism

Although initially introduced to avoid the GıRARD paradox and maintain logical
consistency, the multiple universes present in a type theory influence its logical
power and behaviour, depending on the newdefinition of the SORT and Pı typing
rules.

Impredicativity, cumulativity The universe hierarchy of𝐶𝐶𝜔 is said to be pred-
icative because of the Pı typing rule. This rule states that a dependent product
lives in a universe that is larger than those of its domain and codomain. This
means that each quantification in a term increases its universe level, depending
on the universe of the type over which we are quantifying. The COQ proof assis‑
tant implements this hierarchyby representing □𝑖 with the term Type@{i},16 but 16: In many cases, we leave the universe im‑

plicit and write Type. This feature called typ-
ical ambiguity is presented with the other in‑
ference features of COQ, in section 3.1.

it also includes other universes, such as a ℙ universe represented by the term
Prop called the universe of propositions. This universe has the particularity of be‑
ing impredicative, i.e., when the codomain of a dependent product is ℙ, then the
Pı rule puts the entire dependent product in ℙ regardless of the universe of the

2 A short primer to the COQ proof assistant 15

domain. As the behaviour of this universe in typing is different from that of pred‑
icative universes, it is considered present only in the first prototype developed
during this thesis.

The SORT rule defines the inclusion policy between universes. COQ then defines
an additional version of the rule to define the behaviour of ℙ, but also another
rule known as cumulativity, allowing a universe in the hierarchy to be included in
any universe above it:

𝑖 < 𝑗
Γ ⊢ □𝑖 ∶ □𝑗

(CUMUL)

This generalisation of the SORT rule presented in Figure 2.3 makes the calculus
more flexible, but it alsomakes is harder to reasonaboutuniverse levels, because
of the many additional cases it allows.

Universe polymorphism Typing rules mentioning universe levels impose con‑
straints on these universes. Historically, in COQ, each occurrence of a universe is
associated with a global variable representing its level. These constraints on the
order between universes that appear when typechecking terms are then stored
in a global constraint graph thatmust always be valid, i.e., acyclic. There is no at‑
tempt to determine an exact integer to be assigned to eachuniverse level, but the
validity of the universe constraint graph guarantees the existence of a solution,
which is sufficient to maintain logical consistency in the current development.
For example, here is the definition of a type and a constructor for that type:

Box ∶ □𝛼 → □𝛽

box ∶ Π𝐴 ∶ □𝛾. 𝐴 → Box𝐴

Levels 𝛼, 𝛽 and 𝛾 are then constrained by all the uses of these two constants.17 17: The very definition of box contains an
occurrence of Box , adding the following
constraint by rules APP and CUMUL:

𝛾 < 𝛼

In some cases, this approach can cause typing errors. For example, identity can
conceptually be applied to any term:

id ∶ Π𝐴 ∶ □𝛿. 𝐴 → 𝐴
idℕ 0 ∶ ℕ
id (ℕ → ℕ) (𝜆𝑛 ∶ ℕ. 𝑛) ∶ ℕ → ℕ

However, in this variant of type theory, applying it to itself is impossible. Indeed,
if we apply identity to itself, the first parameter of the application is the type pa‑
rameter, which must live in □𝛿. This parameter is the type of the identity:

Π𝐴 ∶ □𝛿. 𝐴 → 𝐴

Its domain is □𝛿 of type □𝛿+1 and its codomain is 𝐴 → 𝐴 of type □𝛿. By the
Pı rule, the type of identity therefore lives in universe □𝛿+1, which is higher than
□𝛿. Consequently, it is impossible to apply identity to itself.

In terms that donot exploit a particular level of universe but the relation between
differentuniverseswithin thesameterm,oneway toobtain thedesiredbehaviour
is to consider the universes as bound variables. By doing this, we define not a sin‑
gle constant but a family of constants indexed by a list of bound universes that
we then call a universe instance. Identity becomes the following term, indexed
by a universe variable 𝑖 :

id𝑖 ∶ Π𝐴 ∶ □𝑖. 𝐴 → 𝐴

2 A short primer to the COQ proof assistant 16

Thewell‑typedversionof theapplicationof identity to itself is then id𝑖+1 id𝑖. This
feature is called universe polymorphism [27], and identity is said to be a polymor‑ [27]: SOZEAU et al. (2014), “Universe polymor‑

phism in Coq”phic constant over universes, i.e., a universe-polymorphic constant. Each occur‑
rence of a universe‑polymorphic constant is then constrained independently in
the universe constraint graph, rather than globally in the monomorphic case.

Nevertheless, thepractical implementationofuniversepolymorphismraisesnon‑
trivial algorithmic questions. The answer chosen by COQ is therefore not irrevo‑
cable and continues to evolve in current versions of the software.

2.2.2 Inductive types

High‑level programming languagesallowdevelopers todefinecustomdata types.
In statically typed functional languages, these are traditionally Algebraic Data
Types (ADTs), or even Generalised Algebraic Data Types (GADTs). The COQ proof
assistant features a version of ADTs, extended to dependent types and logically
consistent, called inductive types [28]. [28]: PAULıN‑MOHRıNG (1996), “Définitions In‑

ductives en Théorie des Types”

Definitionandpatternmatching For example, consider the definition in COQof
the inductive type nat, corresponding to the theoretical type of natural numbers
ℕ taken as an example more than once previously:18 18: This type would be declared in the fol‑

lowing way, in HAſKELL and in OCAML:

data Nat = O | S Nat
type nat = O | S of nat

Inductive nat : Type =
| O : nat
| S : nat nat.

This definition includes the definition of the nat type constructor, both construc‑
tors O and S, aswell as the registrationof these constants in the typing and reduc‑
tion rules of COQ specific to inductive types.19 The definition above states that a 19: The definition of an inductive type also

includes the definition of the induction prin‑
ciples on this type, presented at the end of
the chapter.

value of type nat is constructed from one of its two constructors. It is therefore
possible to perform a case analysis on any value of type nat to find out its head
constructor, by doing a pattern matching:

Fixpoint add (n1 n2 : nat) : nat =
match n2 with
| O n1
| S n S (add n2 n)
end.

According to the CURRY‑HOWARD correspondence, pattern matching also repre‑
sents the case analysis of proof theory. Consequently, the typing rule of pattern
matching must check its exhaustivity, in order to make it impossible to forget a
case.20 COQ thereforeprohibits thedefinitionof partial functions,whereas a func‑ 20: It is even possible to declare a type with‑

out constructors. As there is no way to build
a value in this type constructively, it encodes
the concept of falsity.

tional language further away from a logical interpretation would simply give a
warning from the compiler in such cases. The Fixpoint keyword indicates that
the definition is recursive. The underlying 𝜆‑term then uses a fix recursion op‑
erator whose typing rule checks that recursive calls are structurally decreasing,
i.e., the function is called only on subterms of the argument of the current call.
This allows recursion while guaranteeing that all programs terminate, as non‑
termination causes logical inconsistency.

These features are crucial in justifying the extra confidence that can be placed in
a COQ proof over a paper proof. However, the terms considered in the following
parts of this thesis do not contain pattern matching, which is why the previous

2 A short primer to the COQ proof assistant 17

section only deals with the core of the theory, 𝐶𝐶𝜔, and the rest of this thesis
only makes passing mention of pattern matching.

Datastructures Inductive types canbeused todefinemanydifferent data struc‑
tures, including different encodings of the same mathematical concepts. For ex‑
ample, here is an example of binary encoding of natural numbers:

Inductive bin_nat : Type =
| bO : bin_nat
| bpos : positive bin_nat.

Inductive positive : Type =
| pH : positive
| pI : positive positive
| pO : positive positive.

Abinarynumber is either0 representedby bO, or anon‑negativenumberencoded
starting from the least significant bit, pO representing 0, pI representing 1, and
pH being the first 1 at the head of the number, with which all numbers start since
the case of bO has been eliminated. Here are some binary numbers and their
representation in this format:

1 (0𝑏1) ↦ bpos pH
2 (0𝑏10) ↦ bpos (pO pH)
6 (0𝑏110) ↦ bpos (pO (pI pH))

It is possible to use both types nat and bin_nat for representing natural num‑
bers. This diversity offered by the proof assistant is at the heart of the questions
addressed during this thesis.

One can also define data structures that make full use of polymorphism and de‑
pendent types. For example, here are definitions of linked lists and a function
that computes the length of a list, in COQ:

Inductive list (A : Type) : Type =
| nil : list A
| cons : A list A list A.

Fixpoint length (A : Type) (l : list A) : nat =
match l with
| nil _ O
| cons _ _ l' S (length l')
end.

The list type takes an argument A in its definition, so it is a polymorphic type:
onecanbuild valuesof type list nat, list (list nat), list (nat nat), etc.
The fact that the argument is located before the announcement of the universe in
which the inductive type lives in theheadof thedefinition—character : —makes
it aparameter, i.e., all theconstructors listedbelow invariablybuildvaluesof type
list A. The types of the constructors therefore contain a quantification over the
parameter, left implicit in the definition of the inductive type but clearly visible
when it is used: the branches of the pattern matching in the definition of length
include this first argument, in an ignored form _ because it does not contribute
to the function’s output value. Indeed, the real types of constructors for list are
the following:

2 A short primer to the COQ proof assistant 18

nil : forall (A : Type), list A
cons : forall (A : Type), A list A list A

Finally, dependent inductive types can be defined, such as the type of vectors of
fixed size:

Inductive vec (A : Type) : nat Type =
| vnil : vec A O
| vcons : forall (n : nat), A vec A n vec A (S n).

Here, the second argument to give to vec in order to obtain a type is a value
of type nat corresponding to the length of the vector. As this value is located
in the type of vec, after character :, it can change from one constructor to an‑
other. It is therefore an index and not a parameter. Pattern matching on a value
v of type vec A n is then a dependent pattern matching, since it performs both
a case analysis on the head constructor of v and on the head constructor of the
value n located in the type of v. Furthermore, dependent pattern matching al‑
lows eliminating impossible cases. To illustrate this point, here is the definition
of a dependent function that reads the head value of a vector:

Definition head (A : Type) (n : nat) (v : vec A (S n)) : A =
match v in vec _ m
return match m with O nat | S _ A end
with
| vnil _ O
| vcons _ _ a _ a
end.

As this function makes no sense in the case of an empty vector, it is only defined
on vectors of type vec A (S n) for a given n. Thepatternmatching inCOQmakes
it possible to specify the typeof the inspectedvaluebymeansof an in clauseand
the typeof the value returned in thebranchesbymeansof a return clause. In the
case of dependent pattern matching, one can make the type of the return value
depend on the type of the inspected value. In the case of head, we bind the size
of the vector to a variable m and we state that the pattern matching will return a
value in a type that depends on the value of m. If m is O, a natural number will be
returned, otherwise it will be a value of type A. The patternmatching branches re‑
flect this case analysis in the return type, because the branch of the empty vector
returns O and the other branch returns the head value a of the vector, which is of
type A. As the value v is never an empty vector, the pattern matching will never
actually take the first branch, but it must be defined for exhaustiveness reasons.
As the case of the empty vector is meaningless but still needs to be defined, we
use an arbitrary return type for this case in the return clause, but trivial to in‑
habit, so that the associated branch is easy to fill. In this case, we choose nat
and give the inhabitant O. Thanks to the expressive power of dependent types,
this function is well typed and the type system guarantees that it can never be
applied to empty vectors.

Encoding additional constructs Inductive types in COQ can also be used to im‑
plement other constructions frequently used in type theory. Here are examples
of definitions for the product type × and the sum type + :

Inductive product (A B : Type) : Type =
| pair : A B product A B.

2 A short primer to the COQ proof assistant 19

Inductive sum (A B : Type) : Type =
| inl : A sum A B
| inr : B sum A B.

Apair of type 𝐴×𝐵 is built using two values of type 𝐴 and 𝐵, and a sumof type
𝐴 + 𝐵 has two cases, either a value of type 𝐴, or a value of type 𝐵.

Dependent inductive types can also be used to encodemore advanced construc‑
tions. A dependent pair Σ𝑥 ∶ 𝐴. 𝐵 is a pair (𝑥 ; 𝑏) in which 𝑥 is a value of type
𝐴 and 𝑏 is a value in a type 𝐵 that is allowed to depend on 𝑥. Such a construc‑
tion can be taken as one of the base constructions of the language under study,
with the same status as the Π‑type or the abstraction, or it can be encoded us‑
ing terms of the language. In COQ, a dependent pair can be represented by the
following type:

Inductive sigma (A : Type) (B : A Type) : Type =
| dpair : forall (a : A), B a sigma A B.

A pair dpair a b contains a value a of type A and a value b of a type B a that
depends on a.

A second advanced construction that can be defined using dependent inductive
types is equality, in a version called propositional equality. An equality 𝑥 = 𝑦
can be encoded as a term eq A x y, where A represents the type of x and y:

Inductive eq (A : Type) (a : A) : A Prop =
| refl : eq A a a.

Equality therefore has only one constructor describing the fact that the only pos‑
sible value equal to a value a is a itself. Thanks to dependent pattern matching,
in a proof containing a hypothesis e of type eq A x y, when typing allows it, per‑
forming a case analysis on e exposes the only possible case, i.e., that y is exactly
the term x, in the sense that these terms become convertible. This case analysis
then allows replacing all the occurrences of y with x and the occurrences of e
with refl A x. Conversely, when a property of type eq A x x must be proved,
it is sufficient to supply the refl A x term to complete the proof. Since con‑
version includes the reduction rules of the calculus, the refl constructor can
be used even when the equality has two syntactically different but convertible
terms. For example, we can use refl to prove the following property, represent‑
ing 1 + 1 = 2 :

eq nat (add (S O) (S O)) (S (S O))

Records Thanks to inductive types,wecanalsoencode records, present inmany
programming languages to structure data. Here is the COQ definition for a record
type representing non‑negative coordinates in two dimensions:

Record Coord = { x : nat; y : nat }.

A record is then defined by giving a value to each field:

Definition coord_origin = x = O ; y = O .

The definition of a record type is equivalent to the definition of an inductive type
with a single constructor taking two arguments, one for each field of the record,
and twoprojection functions toextract each field froman inhabitantof the freshly
created type.

2 A short primer to the COQ proof assistant 20

Inductive Coord : Type = BuildCoord : nat nat Coord.
Definition x (c : Coord) : nat = match c with BuildCoord x _ x end.
Definition y (c : Coord) : nat = match c with BuildCoord _ y y end.

In non‑dependent programming languages, a record can be encoded by a tuple,
since this is just a construction allowing several values to be grouped together
in the same term, by naming them using projections. In a dependent context
such as that of COQ, an analogous encoding of records requires Σ‑types. Since
record types are in fact inductive types, they can naturally be polymorphic or
dependent, and each of their fields is allowed to depend on the previous fields.
This functionality is exploited in the definition of mathematical structures in the
proof assistant. For example, a monoid is a type 𝑀 with an associative opera‑
tion ⋄ ∶ 𝑀 → 𝑀 → 𝑀 and an element 𝑚0 ∶ 𝑀 neutral for ⋄. In COQ, this
mathematical structure can be represented with a record type that, by virtue of
the CURRY‑HOWARD correspondence, contains both data— the definitions of 𝑚0
and ⋄ —andproperties21 —the proofs of associativity of ⋄ and neutrality of 𝑚0 21: Also called laws.
for ⋄ :

Record Monoid (M : Type) = {
mzero : M;
mconcat : M M M;
mconcat_assoc : forall (m1 m2 m3 : M),
mconcat m1 (mconcat m2 m3) = mconcat (mconcat m1 m2) m3;

mzero_neut_mconcat_l : forall (m : M), mconcat mzero m = m;
mzero_neut_mconcat_r : forall (m : M), mconcat m mzero = m

}.

An instance of a mathematical structure on a given type is therefore an instance
of the record type, so its data canbeused in programsand its properties in proofs.
This approach differs in particular from that chosen by HAſKELL, whose standard
library defines several structures, including the monoid, but also the functor or
the monad, only by their data [29]. As HAſKELL is not used to carry out proofs [29]: WADLER (1995), “Monads for functional

programming”internally in the language, compliance with the various laws of mathematical
structures depends on the user’s discipline in declaring instances of these struc‑
tures. It is thenpossible todefine illicit instances that, despite their utility— these
structures provide abstractions that are useful in programming —, make invalid
any reasoning involving the laws of the structure carried out on a program that
uses these instances. As the laws are directly in the record type, any instance of
a structure defined in COQ is forced to abide by them, as its definition includes
their proofs.

From an inductive definition, COQ automatically generates and proves an induc-
tion principle, i.e., a lemma that can be used in proofs to carry out reasoning by
induction on a value of this inductive type. Here is the induction principle gener‑
ated when defining the type nat :22 22: In reality, a separate induction principle

is generated for each existing sort in the cal‑
culus, to cover all possible codomains for
property P, but we are only interested in the
version for Type in this thesis.

Lemma nat_rect : forall (P : nat Type),
P O (forall (n : nat), P n P (S n)) forall (n : nat), P n.

Note that this induction scheme describes the traditional mathematical induc‑
tion on natural numbers: if a property is true for 0 and is transmitted from any
number to its successor, then it is true for all natural numbers. The induction
scheme for lists is similar, with a hypothesis for the empty list and a hypothesis
for theadditionof a valueat theheadof the list. As the typeof lists is polymorphic,
so is the generated induction principle:

2 A short primer to the COQ proof assistant 21

Lemma list_rect : forall (A : Type) (P : list A Type),
P (nil A) (forall (a : A) (l : list A), P l P (cons A a l))
forall (l : list A), P l.

Well-formednessandinductionschemes Apart fromthepresenceofdependent
types, the major difference between inductive types in COQ and algebraic data
types available in other programming languages is that when they are declared,
the proof assistant ensures that it is possible to reason inductively about these
types. Thismeans that not all inductive types canbedefined inCOQ. For instance,
the following inductive type, whose values are constructed from a function pro‑
ducing values in this same type, is invalid in COQ:

Fail Inductive I : Type =
| K : (I I) I.

Indeed, the occurrences of I in the type of K are not all covariant, and the defi‑
nition of this inductive would allow proving the following induction principle:

I_rect :
forall (P : I Type),
(forall (f : I I) (i : I), P (f i) P (K f))

forall i : I, P i

However, by instantiating P with fun _ False, it becomes possible to prove
⊥ and break logical consistency:

I_rect (fun _ False) (fun _ _ F F) (K (fun i i)) : False

As a result, COQ has a positivity checker, i.e., a criterion for well‑formedness of
inductive types, which ensures that logical consistency is maintained if all induc‑
tive types meet it.23 23: This criterion being correct but not com‑

plete, there are theoretically valid inductive
types that are not accepted by the proof as‑
sistant.

Proof assistance 3
3.1 Inference 22
3.1.1 Unification 22
3.1.2 Inference and ad hoc polymor‑

phism 25
3.2 Tactics and automation 26
3.2.1 The proof mode 26
3.2.2 Automated proof tactics 29
3.3 Rewriting and proof transfer . 31
3.3.1 Rewriting 31
3.3.2 Extension to equivalence . . . 32

This section discusses the various featuresmaking COQa genuine proofassistant.
It is a partial overview covering the elements showing up in the rest of this thesis.
Firstly, COQ offers inference features allowing the user to only partially write the
terms and delegate the rest of the work to the proof assistant (§ 3.1). Secondly,
the software features a proof mode with a dedicated language, so that it is pos‑
sible to make progress in a proof step by step and view its current state at any
time, without having to write the proof termsmanually (§ 3.2). Thirdly, the proof
assistant provides ameansof easily exploiting equality andmore generally equiv‑
alence relations between terms, so that they are interchangeable in a relatively
transparent way (§ 3.3).

3.1 Inference

Most statically typed languages come with inference features: HıNDLEY‑MıLNER‑
style languages [30, 31] leading the way, their theoretical basis being designed [30]: HıNDLEY (1969), “The principal type‑

scheme of an object in combinatory logic”

[31]: MıLNER (1978), “A theory of type poly‑
morphism in programming”

with the aim of complete inference, but alsomore common languages. For exam‑
ple, in modern versions of C++, the use of the auto keyword allows letting the
compiler attempt to find the type of a variable or the return type of a function. In
the case of COQ, the programming language is extremely complex, so inference
systems need to be more advanced. In this section, we present various features
that allow the user to implicitly leave holes in terms when some information can
be inferred from the elements they supply.

3.1.1 Unification

The complexity of the language of COQ brings a degree of verbosity in terms, that
can sometimes amount to obfuscation. For example, here is a COQ term corre‑
sponding to the concatenation of two lists of integers [1]⋄ [2, 3], in its raw version
presented in the previous chapter:

mconcat (list nat) (list_Monoid nat)
(cons nat (S O) (nil nat))
(cons nat (S (S O)) (cons nat (S (S (S O))) (nil nat)))

This assumes the existence of a monoid instance for lists in the context:

list_Monoid : forall (A : Type), Monoid (list A)

Unificationvariables The repetition of type nat 𝑛+1 times to build a list of 𝑛
values seems redundant to theuser, but it is necessary for the resulting term tobe
well typed. The information is indeed superfluous, since it suffices, for example,
to systematically give as first argument for cons the type of the value added at
the top of the list, i.e., the next argument. The instantiation of list_Monoid to
nat can also be inferred from the context. The actual implementation of COQ has
a special term constructor called unification variable designed specifically to be
able to leave holes in terms. The example above can then bewritten as follows:

3 Proof assistance 23

mconcat _ (list_Monoid _)
(cons _ (S O) (nil _))
(cons _ (S (S O)) (cons _ (S (S (S O))) (nil _)))

For each hole left in the term, COQ creates a unification variable. The typechecker
must then solve all the unification problems and fill in the holes before accepting
the term. For example, the unification problem for the first list is the following:

cons ?T (S O) (nil ?T) : list ?T

Thanks to the type of S O, we can infer that ?T is type nat and know that the rest
of the list must have type list nat, which triggers the next unification problem
nil ?T : list nat. At the end of the inference process, all the annotations have
been added to the termwithout any help from the user.

Implicit arguments The inference features of COQ allow going beyond the ex‑
plicit creationof unification variables by leaving them implicit. Indeed, as the first
argument of constructors of type list, the type parameter, is inferrable from the
context, it can bemade implicit by using special syntax in the declarations, or by
executing dedicated COQ commands. In the case of an inductive type, it is not
necessarily desirable to make the parameter implicit everywhere, as this would
allow declaring values of type list without mentioning this parameter, which
could lead to confusion. In this case, the following commands are used for con‑
structors:

Arguments nil {_}.
Arguments cons {_}.

Thus, the constructor of type list always needs an explicit parameter, but a
value of type list nat can be constructed just by writing nil. One can also de‑
clare the parameter of list_Monoid and the parameter of mconcat as implicit.
The above example then becomes the following one:

mconcat list_Monoid
(cons (S O) nil)
(cons (S (S O)) (cons (S (S (S O))) nil))

In the definition of a polymorphic function, one can use a syntax that indicates
that the polymorphic parameter is implicit. For example, the head of the declara‑
tion of the length function defined in the previous chapter becomes the follow‑
ing, where the braces declare an argument as implicit:

Fixpoint length {A : Type} (l : list A) : nat.

We then write length l as in a non‑dependent language.

In the context of dependent types, it is even possible for a value to be inferrable
without being a type. For example, the head function retrieving the head of a
vector takes as argument an integer that appears in the type of the next argu‑
ment, the vectorwhose headwewant to extract. This integer can therefore bede‑
clared as implicit and inferred for each occurrence of head . Thus, one can write
head (vcons 4 vnil) without giving any vector size, neither in constructors of
type vec nor in the head function.

3 Proof assistance 24

Notations In order to make terms even more readable, COQ offers a notation
system adding cases to the parser to associate a particular syntax to some terms.
These notations can be infix and the user can define priorities between them. In
particular, the standard library defines notations for arithmetic and lists, in order
to obtain terms in a syntax that is very close to that of other programming lan‑
guages. Notations + and * are associated with addition and multiplication op‑
erations on natural numbers, and numerical constants can bewritten naturally in
base 10. A recursive notation is associated to lists so that they can be expressed
in the syntax of OCAML. Thus, the example in this subsection becomes:

mconcat list_Monoid [1] [2; 3]

In the restof thisdocument,wewill use classicCOQnotations, suchas = for equal‑
ity, * for products, etc.

Coercions Classically, statically typed functional programming forbids implicit
casts between types by default. Then, a boolean value cannot be used in a po‑
sition where the typechecker expects an integer. However, the proof assistant
gives the user the option of declaring a function as a coercion, i.e., an implicit
cast. In this case, a function nat_of_bool of type bool nat that would as‑
sociate true with 1 and false with 0 can be declared as a coercion using the
following command:

Coercion nat_of_bool : bool nat.

Thus, any typing problem b : nat where b is a value in bool becomes a unifi‑
cation problem ?f b : nat where ?f is a coercion. COQ then attempts to build
this coercion, possibly by transitivity. This powerful mechanism provides addi‑
tional flexibility in the syntax but increases the risk of having a term validated by
the typechecker in a case where the user would expect a typing error, with the
typechecker inserting a meaningless coercion. For example, we can define a co‑
ercion that encodes a natural number with a pair of integers defining its quotient
and remainder in a Euclidean division by a given constant. In such a case, if the
usermistakenly enters a boolean in a contextwhere a pair of integers is expected,
COQ may compose the coercions and validate the term, possibly causing errors
that are difficult to trace later on, whereas a typing error would directly show the
problem.

Typical ambiguity Most examples of COQ terms in this thesis do not specify uni‑
verse levels. Indeed, COQ has a feature called typical ambiguity that allows infer‑
ring them automatically. The associated universe constraints are then checked
before concluding that the term is well typed. Inmany cases, this inference is suf‑
ficient and gives the user the illusion that the entire hierarchy of predicative uni‑
verses is a single universe, which ismore natural andmakes it easier to learn COQ,
although theoretically incorrect. On the other hand, in the context of universe
polymorphism, this inference is imperfect and sometimes has to be disabled and
annotations made by hand. Typically, when development includes circular rea‑
soning in which a term contains itself, it may be necessary to enable universe
polymorphism. In order to be sure that we define terms at the right universe lev‑
els, we can impose a strict universe instance and reduce the scope of universe
inference. In this thesis, the implementation of the TRAKT prototype uses typical
ambiguity, but the implementation of the TROCQ prototype specifies many uni‑
verses manually.

3 Proof assistance 25

3.1.2 Inference andad hoc polymorphism

The various inference features presented here take their information from the
context of the unification problem, but it is also possible to retrieve them from
ameta‑level database fed by the user. In particular, this allows implementing ad
hocpolymorphism in someprogramming languages, i.e., the definitionof values,
not by quantifying universally over a type as it is the case for general polymor‑
phism presented earlier, but for a finite subset of types. In this way, a generic
operation can be used on any inhabitant of a type contained in this subset, and
the membership witness is inferred by the type system.

Typeclasses The most common way of implementing ad hoc polymorphism is
to use typeclasses. These are structures whose instances can be registered as
canonical inhabitants of their type. Similarly to HAſKELL [32] or SCALA [33], COQ [32]: HALL et al. (1996), “Type classes in

Haskell”

[33]: OLıVEıRA et al. (2010), “Type classes as
objects and implicits”

has this feature [34]. It can be enabled by using the Class keyword at the head

[34]: SOZEAU et al. (2008), “First‑class type
classes”

of the structure definition. If themonoid is defined as a typeclass, then instances
can be registered by declaring them with the Instance keyword. One can then
definenotations that introduce inferenceproblems thatwill be resolvedautomat‑
ically using the database of instances of the typeclass:

Notation "x y" = (@mconcat _ _ x y).

Here, the first hole is the type declared as a monoid, and the second one is the
instance of type Monoid _.

It is also possible to declare type‑level functions producing canonical typeclass
instances fromother instances. For example, if two types 𝐴 and 𝐵 aremonoids,
then the product type 𝐴 × 𝐵 is also one. The head of the definition in COQ is the
following:

Instance product_Monoid {A B : Type}
`{MA : Monoid A} `{MB : Monoid B} : Monoid (A * B).

This inference method makes it possible to make reliable use of genuine gener‑
icity in the syntax. For example, thanks to this notation and the declaration of
list_Monoid as the canonical function for making instances of monoids on lists,
the example from the previous subsection is written in the following way, which
is exactly the same syntax as the mathematical notation:

[1] [2; 3]

Somedifficulties remain, such as the analogous problemof diamond inheritance
in object‑oriented programming, where an instance can be inferred by several
paths, or the inferenceof complex terms in thecontextofdependent types,where
an instance can be indexed by something else than a type.

Canonical structures Mathematical structures are defined as a type called car-
rier type, provided with particular data — values and/or operations — linked to
this type, as well as laws governing these data. One way of encoding these struc‑
tures inaprogramming language is tousea record typecontaining theoperations
and laws, and to use the carrier type as a parameter of this record tomake it poly‑
morphic, as it is the case in the definition of Monoid in the previous chapter. To
increase automation, we can then turn this record type into a typeclass.

Another solution is toput the carrier typedirectly in the structure, as the first field.
As recordsaredependent, thedefinitionof theother fields is not impacted. This is

3 Proof assistance 26

the solution chosen by the MATHCOMP library [35], as shown by the eqType struc‑ [35]: MAHBOUBı et al. (2021), Mathematical
Componentsture representing types equippedwith a decidable equality. Here is a declaration

similar to the onemade in the library:1
1: The actual declaration exposes a degree
of complexity that does not need to be pre‑
sented here. In particular, it calls on another
library, HıERARCHY BUıLDER [36], that auto‑
mates the creation of nested structures, not
covered in this thesis.

Record eqType : Type = {
carrier : Type;
eq_op : carrier carrier bool;
eq_op_equality : forall (x y : carrier), x = y eq_op x y = true

}

In this case, we can define the first projection as a coercion, thus making it pos‑
sible to write proofs looking like they quantify over an instance of the structure,
but in reality quantify over its carrier type. In order to recover the features of
typeclasses, COQ proposes a way of declaring canonical structures2 [37] to auto‑ 2: This is also the name of the feature.

[37]:MAHBOUBıet al. (2013), “Canonical struc‑
tures for the working Coq user”

matically solve the following unification problem, with T a concrete type and ?E
a unification variable that COQmust fill with the correct structure:

T ≡ carrier ?E

Generic notations can then be defined, such as for eq_op , which can be used
for any instance of eqType . For example, in the following lemma, values T1 and
T2 appearing in the type of u and v hide implicit coercions towards their carrier
type, and we use the generic notation for eq_op on these values:3 3: Here, .1 is a notation for a generic func‑

tion defined on products allowing extraction
of the first component.Lemma pair_eq1 : forall (T1 T2 : eqType) (u v : T1 * T2),

u v u.1 v.1.

Here, u.1 v.1 is actually eq_op T1 u.1 v.1, thecanonical structure inference
function having filled in the term automatically.

3.2 Tactics and automation

The inference presented in the previous sectionmakes the language of COQmore
flexible and therefore easier for theuser towrite. WhatmakesCOQa trueproof as‑
sistant, however, is the exploitation of inference in a proof mode displaying to the
user the current state of the proof until it is completed, making it easier to iden‑
tify the next action to perform. These actions are represented by specific proof
mode commands called tactics. In this way, the proof makes progress step by
stepwithout the user having towrite the proof terms by hand, and the final proof
comes in the formof a script in this tactic language called LTAC [38], which ismore [38]: DELAHAYE (2000), “A tactic language for

the system Coq”readable and closer to a paper proof. Some tactics domore than just performing
a proof step, and build entire proofs of statements contained in a specific theory
that they knowhow to process, thus offering true proof automation. This section
presents the proof mode and these advanced tactics.

3.2.1 The proofmode

Whenmaking a definition, after writing the head of the definition containing the
name and type of the term to be declared, we can give this term in raw form as
we did earlier in the examples, or enter the proof modewith the Proof keyword.
The type of the termwe declare then becomes a type to be inhabited, called goal.
The proof is performed by executing a series of tactics, each of which generates a
proof term. Each proof term is given to COQ and advances the proof more or less

3 Proof assistance 27

according to its type. If its type is not convertible to the goal, then the tactic fails
and the usermust change strategy or cancel the proof. If its type is convertible to
the goal, then we inspect it to see if it contains any unification variables. If there
are no unification variables, the proof is complete. Otherwise, each unification
variable is a hole that still needs to be filled in order to complete the proof: COQ
then creates one subgoal per unification variable and asks the user to prove all
the subgoals. The primitive tactic that exactly reflects this behaviour is refine,
but this presentation of the proof mode focuses on tactics that are closer to logi‑
cal reasoning.

Let us illustrate the proof mode by analysing the proof of the following lemma in
COQ:

Theorem length_append {A : Type} : forall (l1 l2 : list A),
length (append l1 l2) = length l1 + length l2.

First of all, here is a definition of the concatenation function over lists:

Fixpoint append {A : Type} (l1 l2 : list A) : list A =
match l1 with
| nil l2
| cons a l cons a (append l l2)
end.

The initial state of the proof is the following one, represented by hypotheses at
the top and the goal to prove at the bottom:

A : Type
forall (l1 l2 : list A), length (append l1 l2) = length l1 + length l2

Initially, we can use the intros 4 tactic to come under the quantifiers and intro‑ 4: intros l1 l2.
duce into the context two lists l1 and l2.

A : Type
l1, l2 : list A

length (append l1 l2) = length l1 + length l2

Indeed, to prove that a property is valid on any pair of lists, we can name these
values and prove the specialised property on these values, i.e., by instantiating
the quantifiers.

Then, as we have to prove a property on any list, we canmake a case analysis on
l1 with the destruct 5 tactic. COQ therefore divides the proof into two sub‑cases, 5: destruct l1 as a l].
one in which the list has been replacedwith an empty list, and the other in which
the list has been replaced with a list a l.

A : Type
l2 : list A

length (append nil l2) = length nil + length l2
(G1)

A : Type
a : A
l : list A

length (append (a l) l2) = length (a l) + length l2
(G2)

In the first subgoal G1, since in the case of an empty list, the length is zero ac‑
cording to the definition of length, addition is equal to the second value and

3 Proof assistance 28

concatenation is the second list according to the definition of append, the goal
is convertible to length l2 = length l2. Therefore, it is sufficient to apply the
reflexivity tactic, that ends the proof by telling COQ it is a trivial equality. This
tactic call is equivalent to applying the refl constructor of equality with the
exact 6 tactic. This tactic allows applying a proof term expressed in the language 6: exact (refl (length l2)).
of COQ. Thanks to the apply 7 tactic, it is also possible to tell COQ that it is suffi‑ 7: apply refl.
cient to apply refl to an argument, and let the inference take care of finding this
argument. This makes the final proof script more readable. The eapply variant8 8: And in general, tactics prefixed by an e.
adds flexibility by allowing COQ to add unification variables in the event that the
inference does not find the right argument, but it is not necessary here.

To prove the subgoal G2, which then becomes the only remaining goal, we can
perform a reduction stepwith the simpl 9 tactic to see that the presence of a cor‑ 9: simpl.
responds to an incrementation of the lengths on both sides of the equality.

A : Type
a : A
l, l2 : list A

S (length (append l l2)) = S (length l + length l2)

We can then see that the goal is impossible to prove as it stands. Except for the
addition of a : A to the context and S on both sides of the equality — that can
be deleted with the f_equal tactic —, the proof is in the same state as the initial
one. This loop is symptomatic of the use of a tooweak reasoning. A case analysis
is not always sufficient to prove a property on any value of a type. Here, we need
to reason by induction on the list instead of a simple case analysis. The first case
G1 does not change, as it is the base case of the induction, but the second one G2
becomes an inductive case, with an induction hypothesis in its context. We can
then use the induction 10 tactic instead of destruct. 10: induction l1 as a l IHl].

A : Type
a : A
l, l2 : list A
IHl : length (append l l2) = length l + length l2

length (append l l2) = length l + length l2

Thanks to the induction hypothesis, we have exactly the elementwe need to con‑
clude the proof. The final proof script is the following:

Theorem length_append {A : Type} : forall (l1 l2 : list A),
length (append l1 l2) = length l1 + length l2.

Proof.
intros l1 l2.
induction l1 as a l IHl].
- reflexivity.
- simpl. f_equal. exact IHl.

Qed.

The subgoals createdby the induction tactic arepresented in the formof abullet
point list, for greater readability but also to signal toCOQ thatweare first focusing
on the first one, then the second one. The calls to simpl can be left in the script if
the reduction step contributes to a proof that is easier to understand for a human
whowould execute it step by step, but these calls are not strictly necessary since
the typing of COQ includes conversion. The initial step introducing elements into
the context can also be done before the proof, in the head of the definition:

3 Proof assistance 29

Theorem length_append {A : Type} (l1 l2 : list A) :
length (append l1 l2) = length l1 + length l2.

Finally, the proof is concluded with Qed, a line which when executed sends the
global proof term to the kernel for a second check before registering the term in
COQ. There is a subtlety in the closureof theproofmode: the Qed keywordmakes
the proof opaque. This means that after the declaration, the type of the proven
statement is considered tobe inhabited, and thewitness is thedeclared term, but
its definition, i.e., the proof term, is in fact inaccessible, as if it was forgotten by
the proof assistant. This can be useful to distinguish computational proofs from
purely logical proofs, where one does not want to introduce lengthy terms in the
goal because of an ambitious reduction step. If wewish to expose the proof term,
we canmake it transparent by closing the proofmodewith the Defined keyword
instead.

In most cases, declarations with a computational purpose are done by program‑
ming the term, because this is a more natural way to go, and proofs are made in
the proof mode for the same reason. However, the boundary between both is
not clear‑cut. With dependent types, a proof can depend on data and data can
depend on a proof. The best way tomake the declaration is therefore not always
obvious. For maximum control over the generated proof term, it may be inter‑
esting or even necessary11 to manually supply the proof terms, at least partially 11: It is notably the case for some proofs in

the second prototype developed in this the‑
sis, TROCQ, presented in § III.

using the exact tactic in proofmode to supply raw subterms and select the parts
we want to delegate to COQ’s inference.

3.2.2 Automatedproof tactics

Theproofmodeprovides theuserwitha levelof abstractionoverCOQ’s𝜆‑calculus
in the creation of proofs, but it can also be used to automate them. Indeed, the
tactics receive the current state of the proof and return a term justifying the tran‑
sition to a new proof state, which is the final state if the term is sufficient to com‑
plete the proof. The tactics presented earlier are used to perform atomic proof
steps, but nothing prevents the development of more advanced tactics, able to
reduce proofs to a single line in the proof script.

Some tactics perform proof search by selecting lemmas in the context or in ded‑
icated databases. This is the case for the auto tactic in the standard library, but
also for muchmore complex tools such as hammers, inspired by the SLEDGEHAM‑
MER [39] plugin for the IſABELLE/HOL [8] proof assistant. Hammers first filter the [39]: BÖHME et al. (2010), “Sledgehammer:

judgement day”

[8]: NıPKOW et al. (2002), Isabelle/HOL: a
proof assistant for higher-order logic

global context to select the most relevant reachable lemmas for the proof to per‑
form. Then, they send this context and the goal to be proved to automated theo‑
rem provers, and determine the minimal sub‑context needed to make the proof.
This minimal context is then given to a reconstruction procedure that performs
the proof once again, this time within the proof assistant. The representative of
this family of tools in the COQ ecosystem is the COQHAMMER [40] project. [40]: CZAJKA et al. (2018), “Hammer for Coq:

Automation for dependent type theory”
Other tactics are implementations of decision procedures, algorithms able to au‑
tomatically prove statements in a given theory. For example, the lia [17] tactic [17]: BEſſON (2006), “Fast Reflexive Arith‑

metic Tactics the Linear Case and Beyond”in the standard library is the implementation of a decision procedure for integer
linear arithmetic. It allows proving any statement belonging to this theory in a
single tactic call. Another example is the SMTCOQ [41] project, connecting COQ [41]: EKıCı et al. (2017), “SMTCoq: A Plug‑In

for Integrating SMT Solvers into Coq”to SMT solvers. The goal to prove is first encoded into the SMT‑LIB language [42],

[42]: BARRETTet al. (2010), “TheSMT‑LIBStan‑
dard: Version 2.0”

a standard input format for this family of solvers, then the problem is given to an
SMT solver instrumented to provide a trace of its execution giving hints as to how

3 Proof assistance 30

to prove the goal. This trace is then fed to a reconstructionprocedure in COQ, that
makes the proof term for the original goal.

An example of a proof where an automation tactic can be used is the proof of an
instance of the Monoid record for nat :

Definition nat_Monoid : Monoid nat.

The econstructor tacticallows the recordconstructor tobeappliedwithoutnam‑
ing it, by creating unification variables for all the fields. The inference then ex‑
pects more information from the user to fill in these variables. Here, we want to
fill in the fields manually one by one, so we turn these unification variables into
subgoals using the unshelve 12 tactic. Initially, these goals mention the unifica‑ 12: unshelve econstructor.
tion variables:

?mzero : nat
(G1) ?mzero : nat

?mconcat : nat nat nat
(G2)

?mzero : nat
?mconcat : nat nat nat

forall (a b c : nat),
?mconcat a (?mconcat b c) = ?mconcat (?mconcat a b) c

(G3)

?mzero : nat
?mconcat : nat nat nat

forall (m : nat), ?mconcat ?mzero m = m
(G4)

?mzero : nat
?mconcat : nat nat nat

forall (m : nat), ?mconcat m ?mzero = m
(G5)

By focusing in turn on each subgoal in the order of the fields in the record, at each
stage we prove a subgoal without unification variables. We choose to declare a
monoid based on addition as the accumulator and zero as the neutral value. We
therefore give these two values with the exact 13 tactic. The last three subgoals 13: exact 0. / exact add.
then become the following:

forall (a b c : nat), a + (b + c) = (a + b) + c
(G3)

forall (m : nat), 0 + m = m
(G4)

forall (m : nat), m + 0 = m
(G5)

The subgoal G3 can be proved by hand by induction on the integers, but if we
notice that it falls into the theory of linear arithmetic, we can delegate the en‑
tire proof to the lia tactic. Finally, the last two subgoals are classical properties
on natural integers, proved in lemmas of the standard library. In these cases, an
automation tool such as lia is not necessary, but can simplify the proof script.
Indeed, we can specify which goals we want to apply a tactic to, by prefixing the
call with the numbers of the targeted goals, the prefix all applying the tactic to
all the remaining goals. From the third subgoal onwards, the proof can be closed
with a lineby calling lia onall the remaining fields. The final proof script is there‑
fore the following:

Definition nat_Monoid : Monoid nat.
Proof.

3 Proof assistance 31

unshelve econstructor.
exact 0. exact add.
all: lia.

Defined.

Note that the proof is concluded with Defined because we want to be able to
extract mzero and mconcat from this term for computational purposes.

3.3 Rewriting andproof transfer

Another category ofmanipulations frequently carriedout inmathematical proofs
is rewriting, i.e., substitution of values, mathematical structures, etc., identified
as similar. In the context of formal proofs, one must give this concept of similar‑
ity a formal definition, in order to justify the transition from the initial state to the
substituted state in the kernel of the proof assistant. Equality is an example of re‑
lation that can be used to represent this notion of similarity. For example, when
solving a system of equations, isolating a variable in one of the equations allows
it to be expressed as a function of all the others and replaced with this new ex‑
pression in all the other equations, thereby reducing the size of the problem.

Inmathematical practice, equivalence relations that aremoregeneral thanequal‑
ity can be used to represent similarity between objects. This reasoning up to
equivalence allows greater freedom in the proofs regarding the representation
of mathematical objects. For instance, depending on the context and the proof
to be carried out, itmay be interesting to see a natural number through the prism
of a unary encoding or a binary encoding, but the results obtained on unary in‑
tegers can naturally be exploited in proofs on binary integers, and vice versa, as
these two encodings are equivalent. In a COQproof, the situation is not as simple,
because the equivalence relations have to be formalised and the type system is
less flexible. Indeed, in the context of dependent types, replacing one type with
another is not trivial and can make a term ill typed. Making a proof performed
with one encoding of a mathematical object available in the context of another
encoding of this object is calledproof transfer, and it is a non‑trivial task although
transparent on a paper proof. This section explains how rewriting works and dis‑
cusses its extension to proof transfer in COQ.

3.3.1 Rewriting

The equality of COQ, represented by the inductive type eq, is based on the princi‑
ple of identity of indiscernibles, attributed to LEıBNıZ, according to which equal‑
ity between two terms corresponds to the fact that these elements behave in the
same way in all contexts. Formally, this property translates into the induction
principle of equality: if a property is true for x and x = y, then the sameproperty
is true for y. Here is the type of the induction principle eq_rect in the standard
library of COQ:14 14: In the specific case of eq, the induc‑

tion principle used by default in COQ is non‑
dependent, i. e., theproperty P doesnot also
quantify over a proof of equality but only
over the value of the index of type A.

eq_rect : forall (A : Type) (x : A) (P : A Type),
P x forall (y : A), x = y P y

This term can then be used to perform rewriting in a goal. Suppose that we wish
to performa rewrite between two values y and x of type A froman equality e of
type x = y. To do this, it suffices to abstract the occurrences of y in the goal, to
obtain a predicate of type A Type thatwill be precisely the P argument of the

3 Proof assistance 32

induction principle of equality. The term eq_rect A x P ?px y e is thus a proof
of the goal, with a unification variable ?px corresponding to a new goal P x, i.e.,
the same goal in which the selected occurrences of y have been replaced with
x.

The tactic allowing rewritingusingan instanceof eq_rect as theunderlyingproof
term is rewrite. It takes as parameters the direction of the rewrite — x to y or y
to x —, the equality proof justifying it, as well as possible hints as towhich occur‑
rences we wish to rewrite and which we wish to leave untouched,15 or the term 15: By default, the tactic tries to rewrite the

value wherever it is possible to do so.we want to rewrite — by default, the goal. The tactic equivalent of the rewriting
proof term is therefore rewrite e or rewrite e.

3.3.2 Extension to equivalence

Thanks to rewriting as presented above, we can exploit equalities in proofs. How‑
ever, there are other situations in which a rewrite would be performed in a pa‑
per proof, not exploiting an equality but another equivalence relation instead.
Indeed, COQ defines tactics reflexivity, symmetry, and transitivity, allow‑
ing respectively to apply refl, to flip an equality, and to cut a proof of equal‑
ity in two, by going through an equality with a third term. Yet, the properties of
reflexivity, symmetry, and transitivity are common to all equivalence relations.
Consequently, COQ is equipped with a generalised rewriting [43] feature that ex‑ [43]: SOZEAU (2009), “A New Look at General‑

ized Rewriting in Type Theory”tends these tactics aswell as the rewrite tactic to setoids [44], i.e., typeswith an

[44]: BARTHEet al. (2003), “Setoids in type the‑
ory”

equivalence relation. For example, consider the propositional equivalence ,
i.e., a two‑way implication between two propositions in Prop. This relation is
an equivalence in Prop, so it is possible to declare Prop as a setoid with this
relation. Thanks to generalised rewriting, we can then prove A C with the
transitivity tactic andproofs of A B and B C, for awell‑chosenpropo‑
sition B.

Although extended to setoids, rewriting remains limited to equivalence relations,
thus homogeneous relations. Rewriting in types is therefore a fragile action, be‑
cause it can modify types in a statement but not the values that inhabit these
types. Indeed, we can relate the unary and binary encodings of the natural num‑
bers nat and bin_nat, declared in§2.2.2,withanequivalence relationover types,
but the relation cannot extend to values in these types thatmight be present in a
goal. For example, consider the following goal:

forall (n : nat), 0 n

Here, we cannot rewrite nat into bin_nat without impacting the rest of the goal,
because the occurrences of n change type in the process. In this case, we need a
way to relate the order relation to an equivalent over bin_nat, and constants
O and bO together, in order to transfer the whole goal from nat to bin_nat. This
globaloperation is calledproof transfer andcanbeused to transferexistingproofs
or reformulate goals, along equivalence proofs.

The COQEAL [45] project allows working with heterogeneous relations, that can [45]: COHEN et al. (2013), “Refinements for
Free!”beused to relate several representations of the samemathematical object, in par‑

ticular a representation adapted to the proof of properties on the object and a
more powerful representation for expressing programmes using the object. This
is knownas refinement. This pluginworks onheterogeneous functional relations,
but performs transfer only on closed terms without quantifiers. The rest of this
thesis explores different options for proof transfer, first with the aim of prepro‑
cessing goals before running a proof automation tactic (§ II), thenwith the aim of

3 Proof assistance 33

pushing further various recent proof transfer approaches based on parametric-
ity [13], offering a maximum level of generality including dependent types but [13]: REYNOLDſ (1983), “Types, Abstraction

and Parametric Polymorphism”sometimes introducing axioms in a suboptimalway (§ III). The last part dealswith
implementation of such proof transfer techniques in COQ (§ IV).

Meta-programming in COQ
with COQ-ELPI 4

4.1 A logic meta‑programming
language for COQ 34

4.1.1 A logic programming legacy . . 34
4.1.2 Encoding of COQ terms 36
4.2 A toolbox 37
4.2.1 Databases 38
4.2.2 Creation of commands and

tactics 39

The proof mode allows automating proofs by letting the user execute tactics to
generate proof terms for them. Proof scripts are then written in the LTAC tactic
language, that can be used to chain tactics calls and structure the proof. Tac‑
tics are written in ameta‑language, the exact choice not being important for COQ
since tactics can be seen as functions from one proof state to another. The only
constraint on the tactic is that it must be able to provide a proof term that can be
verified by the kernel afterwards.

Several meta‑languages are available in COQ, each one with particular strengths:
LTAC, OCAML, METACOQ, LTAC 2, COQ‑ELPı, etc. The LTAC language has functions
to inspect the current proof state and create COQterms, which makes it a meta‑
language that can be used to write tactics. The most primitive meta‑language is
OCAML, since it is the language used to implement COQ itself. Interactions with
COQ are then made with the internal API of the proof mode and COQ terms are
manipulated in their internal representation, which givesmaximum freedombut
exposesall thecomplexity to themeta‑program. TheMETACOQproject [46] allows [46]: SOZEAU et al. (2020), “The MetaCoq

Project”manipulating COQ terms directly in COQ. It is therefore useful when one wishes
to certify the meta‑program, for example by proving its completeness. The aim
of the LTAC 2 language [47] is to be a meta‑language syntactically close to LTAC, [47]: PÉDROT (2019), “Ltac2: tactical warfare”
while adding features expected in a modern language, such as a type system or
a way to declare data structures. All the developments carried out during this
thesis were done in the COQ‑ELPı meta‑language [16], presented in this chapter. [16]: TAſſı (2018), “Elpi: an extension lan‑

guage for Coq (Metaprogramming Coq in the
Elpi 𝜆Prolog dialect)”

We focus first on its features and then on the accompanying tools to interact with
COQ.

4.1 A logicmeta-programming language for COQ

In reality, the COQ‑ELPı plugin is an extension of a language called ELPı [48] to [48]: DUNCHEV et al. (2015), “ELPI: Fast, Em‑
beddable, 𝜆Prolog Interpreter”make it a complete meta‑language for COQ. This section presents this language

and the features that make it interesting in the context of meta‑programming for
COQ. We also explain how COQ terms are represented in Elpi.

4.1.1 A logic programming legacy

The ELPı language belongs to a family of languages known as logic programming
languages. This programming paradigmwas developed in the second half of the
20th century with the advent of its most famous representative, PROLOG [4]. The [4]: COLMERAUER et al. (1973), “Un système

de communication homme‑machine en
français”

base object of such a language is the predicate, and programs have a logical in‑
terpretation in a subset of first‑order logic.

Howalogicalprogramworks Rather thana seriesof instructions tobeexecuted,
a logical program is represented by a knowledge base and a query. The knowl-
edge base is a list of declarations of facts — predicates that are unconditionally
true — and rules — predicates that are true if a set of premises is true. Each dec‑
laration of a predicate is called an instance of that predicate, and can have ar‑
guments that are either atoms — base constant values of the language, such as

4 Meta-programming in COQ with COQ‑ELPı 35

numbers or strings — or variables, i.e., named locations that do not yet contain
a concrete value.

The query is a list of predicate instances that we want tomake true. An inference
engine then explores the knowledge base to check whether a solution exists. For
each predicate to bemade true, the instances of this predicate in the knowledge
basearebrowsed. For each instance, anattempt ismade to syntacticallyunify the
head of the instance— the fact or the conclusion of the rule —with the predicate
instance to satisfy in the query. If unification succeeds, we replace this predicate
in the query with the body of the instance— the conditions for the rule to be true
—, which must also succeed for the query to have a solution. If unification fails,
wemoveon to thenext instance. If all theoptions are exhausted, then the request
cannot be satisfied.

Logical languages are therefore said to be declarative, as they describe the prob‑
lem and the characterisation of a solution rather than the procedure to compute
this solution. More precisely, ELPı is an implementation of 𝜆PROLOG [49], an ex‑ [49]: MıLLER et al. (1987), A logic program-

ming approach to manipulating formulas
and programs

tension of PROLOG adding 𝜆‑terms — predicates behave like functions —, quanti‑
fiers, and an implication operator.

Let us illustrate how ELPı works with a simply‑typed encoding of 𝜆‑calculus, pre‑
sented in § 2.1.2.

kind lterm type.
type abs (lterm lterm) lterm.
type app lterm lterm lterm.

The code above declares a new type lterm representing the 𝜆‑terms, with two
constructors, abs for the abstraction and app for the application. This is a HOAS
encoding — Higher Order Abstract Syntax [50] —, i.e., variables and functions in [50]: PFENNıNG et al. (1988), “Higher‑Order

Abstract Syntax”the object language are represented with ELPı variables and functions.

We can define an ELPı type to represent the simple types of this 𝜆‑calculus:

kind ltype type.
type arrow ltype ltype ltype.

Similarly, the case of the type variable is represented by an ELPı variable. From
these declarations, we can implement a typing predicate, taking a term from the
calculus and returning a simple type.

pred type-of i:lterm, o:ltype.
type-of (app T1 T2) B :-

type-of T1 (arrow A B),
type-of T2 A.

type-of (abs F) (arrow A B) :-
pi a\ type-of a A type-of (F a) B.

The first line declares the type of the predicate, precisingwhether each argument
is an input or an output. Each instance reflects a typing rule of the calculus, with
the head of the instance representing the conclusion of the rule, and the body
of the instance representing its premises. Note that the case of abstraction uses
operators pi and , representing universal quantification and implication re‑
spectively. As the abstraction is represented by a meta‑function, in order to in‑
spect the body of this function, we need to provide it with an argument. The pi
operator then locally introduces a variable a, called a universal constant. The
term F a is then the body of the abstraction inwhich the bound variable is a. We
check that this term has a type B, but this is only possible if we give a type to the

4 Meta-programming in COQ with COQ‑ELPı 36

newly introduced variable a. The role of the implication is context extension and
corresponds exactly to this situation: we add the hypothesis that a is of type A
into the execution context of the predicate on the right hand side of the arrow.
Thus, in the execution of type-of (F a) B, when we search for the type of a, the
assumptionwe have providedwill be an additional instance of the type-of pred‑
icate allowing us to give a type to this variable. The VAR→ rule that involves the
context is then implicit since it exploits the ELPı context.

Constraint handling rules A crucial feature of ELPı is the Constraint Handling
Rules (CHR) language [51]. This feature allows making the control flow of ELPı [51]: FRÜHWıRTH (1994), “Constraint Han‑

dling Rules”programsmore complex, by allowing requests to be frozen on a variable, i.e., sus‑
pended until this variable takes a concrete value. A request R is frozen on a list
of variables L by calling the following predicate:

declare_constraint R L

In addition to freezing queries, it is possible to declare rules to detect the simul‑
taneous presence of a set of frozen queries and execute ELPı code. For example,
consider a binary predicate p1 and a unary predicate p2. We can declare a com‑
mon constraint handling rule for these two predicates as follows:

constraint p1 p2 {
rule (p1 X Y) \ (p2 1) | Cond Code.

}

The rule is triggered as soon as there is simultaneously in the set of frozen predi‑
cates an instance of p1 applied to two arbitrary values and an instance of p2 ap‑
plied to the constant 1. When the rule is triggered, condition Cond is tested to
see if the code of the rule— variable Code —must be executed. If the condition is
true, the code is executed; otherwise, the other rules are inspected. Character \
is used to delete frozen requests once the rule has been executed: all predicates
at the left of this character are kept, all those at the right are deleted. It is possible
to write a rule that does not delete any identified predicates, or one that deletes
them all.

4.1.2 Encoding of COQ terms

The COQ‑ELPı plugin connects ELPı to COQ by defining internal predicates written
in OCAML giving ELPı developers access to the proof assistant’s API, in order to
interact with COQ directly from themeta‑language. When the body of a predicate
is written in OCAML, it is necessary to define a way to connect OCAML values and
ELPı values. Eachmanipulated data structuremust then have a representation in
both languages, in particular the COQterms.

The𝜆‑calculus of COQ is encoded by an ELPı type term , whose constructors used
in this thesis are as follows:

type sort sort term.
type fun name term (term term) term.
type prod name term (term term) term.
type app list term term.
type global gref term.
type pglobal gref univ-instance term.

4 Meta-programming in COQ with COQ‑ELPı 37

Let us present these constructors in order.

First of all, sorts are encoded by a constructor sort. We distinguish the case prop
that encodes the impredicative universe ℙ from the case typ I that encodes the
predicative universe □𝑖 by associating 𝑖 with I using another ELPı type repre‑
senting universes.

Next, the encodings of theΠ and𝜆 binders are the prod and fun constructors re‑
spectively. This is also a HOAS encoding, where binders use meta‑functions. As
a result, there are no cases for bound variables or unification variables. Bound
variables are represented with universal constants as in the previous example of
simply‑typed 𝜆‑calculus, and unification variables are represented by ELPı vari‑
ables.1 These two cases are notoriously difficult to deal with in the more tra‑ 1: A term with holes in COQ is therefore also

a termwith holes in ELPı.ditional encodings of COQ terms, as these terms are tricky to handle. Indeed,
these variables only make sense in a given context. To avoid having to take the
names of bound variables into account in the reasoning, one prefers encodings
that make 𝛼‑equivalent terms syntactically equal. Thus, the common encodings
of 𝜆‑calculus represent bound variables with DE BRUıJN indices [52], i.e., a con‑ [52]: DE BRUıJN (1972), “Lambda calculus no‑

tation with nameless dummies, a tool for au‑
tomatic formula manipulation, with applica‑
tion to the Church‑Rosser theorem”

structor var𝑛 where 𝑛 is anaturalnumber representing thedistance to thebinder
whose variable this constructor points to. In this context, binders are just rep‑
resented with the type of the bound variable and the bound term. For exam‑
ple, if we denote lam the constructor that encodes 𝜆 and A the encoding of a
type 𝐴, the identity 𝜆𝑥 ∶ 𝐴. 𝑥 is encoded as lam A var1, and the encoding of
𝜆𝑥 ∶ 𝐴. 𝜆𝑦 ∶ 𝐴. 𝑥 is lam A (lam A var2). The HOAS encoding chosen by COQ‑
ELPı is another way to represent terms up to 𝛼‑equivalence.2 Indeed, the use of 2: The first parameters of type name in the

binders are just present for display reasons,
but are not taken into account in ELPı’s unifi‑
cation.

a meta‑function sets the position of the binder to which the variable refers, and
even has the advantage over DE BRUıJN indices that it is impossible for a variable
to escape its scope, whereas without further involvement of the type system of
themeta‑language, a DE BRUıJN index can be higher than the number of binders
present in the term. Moreover, term abstraction or reduction requires rigour in
index shifting, whereas these operations are trivial in ELPı.

Concerning the remaining constructors, we note that application is 𝑛‑ary to re‑
flect the OCAML type of COQ terms, and constants are represented with two dif‑
ferent constructors depending on whether they are universe‑polymorphic. The
names of constants are encoded in a gref 3 type that distinguishes between in‑ 3: For global reference.
ductive type constructors— indt —, inductive value constructors— indc —and
the rest of the definitions — const. Other term constructors are available, such
as match or fix, but are not discussed in this thesis.

Here is an example of COQ term and its encoding in ELPı:4 4: We assume here that A is a universe‑
monomorphic inductive type and u is a
named universe.fun (X : Type@{u}) (f : Type@{u} A) f X

fun `X` (sort (typ «u»)) x\
fun `f` (prod `_` (sort (typ «u»)) _\ global (indt «A»)) f\
app [f, x]

A COQ‑ELPı tool receives and sends COQ terms — command arguments, goals to
prove, proof terms, etc. — in this format.

4.2 A toolbox

In addition to the features offered by the ELPı language and the high‑level en‑
coding of COQ terms, the COQ‑ELPı plugin provides numerous entry points to the

4 Meta-programming in COQ with COQ‑ELPı 38

COQ API, for example to search for the definition of a term in the COQ context
in which the meta‑program runs, call the typechecker, or create new definitions.
Databases can also be created to store terms at the meta level, as well as com‑
mands and tactics to interact with the proof assistant, making ELPı a complete
meta‑programming tool.

In this section,we shall take the simple exampleof a termdisplay feature, i.e., the
association of each type with a functionmaking a string from a value of this type.
To do this, the HAſKELL language uses a Show typeclass and includes an instance
derivation feature for new data types with the deriving keyword:

class Show a where
show a String

data Maybe a = Just a | Nothing
deriving Show

This feature canbeobtained inCOQusingadatabase storing thedisplay functions
specific to each constant and a command generating new functions fromexisting
functions and a type declaration.

4.2.1 Databases

In COQ‑ELPı, a database is a bank of predicate instances. A predicate can indeed
beusedasaway togroupdataor associate themtogether. Inour case,wewant to
associate constants with COQ functions to display them. We can use a predicate
show taking as arguments two constants, one for the type to be displayed, the
other for the display function.

Database creation The creation of a COQ‑ELPı database is done with the Elpi
Db command, that is given the name of the database as well as a block of code
declaring the various predicates representing the data that will be stored in it
later. For example, here is the declaration of a database intended to contain in‑
stances of display functions:

Elpi Db show.db lp:{{
pred show o:gref, o:constant.

}}.

Here, show.db is the name of the database. Note that the first argument can be
any constant — inductive type, constructor, definition —while the second is nec‑
essarily a definition, since this is a function whose codomain is string.

Adding information to a database An instance of the show predicate is added
to the database using a predicate internal to COQ‑ELPı, coq.elpi.accumulate. It
takes various arguments allowing the specification of the database in which to
store the instance, at what location in this database more precisely, etc., as well
as the predicate instance. For example, if the user declares a term show_nat as a
display function for type nat, it can be added to the database show.db with the
following query in COQ‑ELPı :

global Nat = {{ nat }},
global (const ShowNat) = {{ show_nat }},
coq.elpi.accumulate _ "show.db" (clause _ _ (show Nat ShowNat))

4 Meta-programming in COQ with COQ‑ELPı 39

The {{ ⋅ }} syntax is the quoting operation enabling COQ syntax to be usedwithin
a COQ‑ELPı program, the term then being translated into its ELPı representation.
The syntax of the opposite operation, unquoting, allowing a term expressed in
themeta‑language to be written in themiddle of a term expressed in COQ and to
be evaluated to obtain a term entirely expressed in COQ, is lp:{{ ⋅ }}. Naturally,
in a complete plugin for COQ, the user does not have to write this ELPı codeman‑
ually to populate a database. Instead, they can use a COQ command provided by
the plugin developer. This also has the advantage of adding an indirection level
between user input and the actual database modification code, for example to
check that the terms supplied by the user as arguments to the command arewell
typed and correspond to the format of the data we wish to store.

Databasequeries Once the user has filled the knowledge basewith the desired
information, any COQ‑ELPı code connected to the base can exploit it by making
queries. As thedataare representedwithpredicate instances, performingaquery
amounts to calling one of the predicates defined in the database. If the instance
we are looking for exists, then the predicate will succeed, otherwise it will fail.

4.2.2 Creation of commands and tactics

The main interest of a meta‑language for COQ is to enable the development of
tools to interact more efficiently with COQ, i.e., commands and tactics. Com‑
mands allow registering data, to retrieve and display information, and to auto‑
mate declarations. Tactics allow performing proofsmore quickly than letting the
user do it alone, by executing algorithms implemented in the meta‑language to
automate the proof steps. In the example given earlier, we want to have a com‑
mand to register display functions and a command to generate new ones.

Commands A command allowing the user to declare display functions could be
the following one:

Show Declare nat show_nat.

Themain role of this command is to replace the manual call to the internal pred‑
icate coq.elpi.accumulate. It is declared as follows:

Elpi Command Show.
Elpi Accumulate Db show.db.
Elpi Accumulate lp:{{
main [str "Show", str "Declare", trm T, trm F] :- % .

}}.

After connecting the command to the database, we give the main predicate of
the command, with the arguments it expects and the code to execute when it is
called. Here, variable T will contain the termcorresponding to the type forwhich
we want to add a display function. This function is then represented by variable
F. This main predicate calls coq.elpi.accumulate, but it can check beforehand
that T and F arewell typed, for example, or even that F has the type of a display
function for T. This ensures that the database contains well‑formed data at all
times.

A command can be declared in a similar way to generate a display function on
an inductive type I from its definition. An internal predicate coq.env.indt is
then called to retrieve the declaration, giving amongst other things the types of

4 Meta-programming in COQ with COQ‑ELPı 40

the inductive type constructor and the inductive value constructors. The function
can then be generated by syntactically inspecting these types. Once the display
function has been built, the internal predicate coq.env.add-const can be called
to declare this term as a new constant show_I for example.

Tactics A tactic is created with COQ‑ELPı using the following command, where
t is the name of the tactic:

Elpi Tactic t.

Just like commands, a tactic has amain predicate,5 definedby accumulating ELPı 5: In the case of tactics, it is called solve.
code, after connecting the tactic to the various databases its code uses:

Elpi Accumulate lp:{{
solve InitialGoal NewGoals :- % .

}}.

The solve predicate takes the initial goal and must return a list of goals contain‑
ing the associated goal as well as any proof obligations that the tactic leaves be‑
hind.

The initial goal is represented with a value of the ELPı type goal, containing the
context of the goal, the type to inhabit in order to prove it, and the various argu‑
ments given to the tactic. This goal type also contains variables of type term rep‑
resenting the proofs to apply for proving the goal. These are initially undefined
variables, and any unification constraint applied to them results in an action on
theproof term inCOQ. Touching these termsdirectly is thereforea trickybusiness,
but an API is available in COQ‑ELPı to act on the proof term in a controlled man‑
ner. In the context of this thesis, we only use the refine function that essentially
performs the same action as the COQ tactic with the same name, i.e., applying a
proof term with holes, these holes representing the new proof obligations. COQ
checks that the term is well typed, provided that the user subsequently fills the
holes.

TRAKT:
PROOF TRANSFER
BY CANONISATION

Introduction

The decision procedures used to automate the proofs of statements contained in
a theory are defined in an abstract way, using the mathematical objects present
in the signature of this theory, i.e., the list of symbols belonging to the theory as
well as the various equations governing it. However, in the COQ proof assistant,
it is possible tomodel the samemathematical object in different ways, as shown
by the definition of inductive types nat and bin_nat in § 2.2.2. This diversity in
the representation ofmathematical objects is available both for the tactics devel‑
oper and for the user of the proof assistant.6 For example, when implementing a 6: For the latter, it is important, as certain

proofs are more easily done with certain rep‑
resentations.

decision procedure for COQ, the developer chooses a representation for each of
the symbols of the concerned theory. The automation tactic — the result of this
implementation — is then initially biased towards one of the representations: if
the user chooses the same data structures as the developer of the tactic to rep‑
resent the theory, then the decision procedure can run normally and provide the
expected automation; otherwise, the tactic does not recognise the different sym‑
bols, which makes it unable to fulfil its role correctly.

In order to increase compatibility of the goals with the decision procedures, one
solution is to add a preprocessing phase between these goals and the associ‑
ated tactics. An ideal preprocessed statement would express all the symbols of
a theory’s signature with terms defined using the same data structure, the one
recognised by the automation tactic that we wish to execute after preprocessing.
The various representations that can be found in the statements must therefore
all converge to the target signature. The preprocessed statements are then ex‑
pressed in a canonical formmaximising the chances of success of the automation
tactic that is subsequently executed. In order to replace the original goalwith the
preprocessed goal, it is necessary to prove that the latter implies the former. In‑
deed, if we wish to prove 𝐺′ when COQ expects a proof of 𝐺, wemust apply the
modus ponens rule using a function of type 𝐺′ → 𝐺, that performs the goal
substitution.

This section presents TRAKT7 [12], a pragmatic goal preprocessing plugin for COQ 7: The implementation is available in the
repository:

https://github.com/ecranceMERCE/trakt

[12]: BLOT et al. (2023), “Compositional pre‑
processing for automated reasoning in de‑
pendent type theory”

whosegoal is to allowmore statements tobeprovedby existing implementations
of decision procedures. We first present the specification of the desired prepro‑
cessing tool and we position the existing tools in relation to this objective (§ 5).
We then give a detailed theoretical presentation of the preprocessing carried out
by TRAKT (§ 6). Finally, we position this tool in relation to an ecosystem of pre‑
processing tools in COQ, and identify the prospects for improvement (§ 7).

https://github.com/ecranceMERCE/trakt

Goal canonisation:
objectives and current situation 5

5.1 Content of the desired prepro‑
cessing algorithm 43

5.1.1 Preprocessing of theories . . . 43
5.1.2 Status of logic 45
5.1.3 Polymorphism and dependent

types 46
5.2 The zify family: features and

limits 46
5.2.1 Modular preprocessing of

arithmetic 47
5.2.2 Preprocessing of logic 48
5.2.3 The mczify extension 49
5.2.4 Limitations of zify 49

The context of goal preprocessing in COQ is broad, and the nature of the rewrites
to perform depends on the decision procedure we wish to execute after prepro‑
cessing, as well as the flexibility of its implementation. We restrict this context
to goal canonisation, i.e., exploitation of equivalences between types and oper‑
ations in a rewriting of the goal, so that it uses the same implementation of the
signature of a theory as the one chosen by the developer of the automation tool
we wish to run to prove the goal. However, even within this reduced frame, per‑
fect preprocessing does not exist, as each tool deals with a specific sub‑problem
and not necessarily in a complete way. The development of preprocessing tools
is therefore incremental, each tool being justified by the identification of limita‑
tions in existing tools dealing with the same problem. In this chapter, we define
the preprocessing problem we are interested in for the first part of this thesis
(§ 5.1), thenwe study the features of a family of preprocessing tools based on the
zify tactic, as well as their limitations regarding the problem to solve (§ 5.2).

5.1 Content of the desired preprocessing algorithm

Anefficientway todefine the objective of a goal preprocessing tool is to base it on
the automation tactic that wewish to execute to prove the statements contained
in a given theory, and to identify the differences between the goals frequently en‑
countered by the user in this theory and the implementation of the signature of
the theory in the automation tactic. In the case of TRAKT, the general objective is
to have a preprocessing tool for theories in the SMT family, and in particular to
improve the preprocessing phase of the SMTCOQ plugin [41], a tool for connect‑ [41]: EKıCı et al. (2017), “SMTCoq: A Plug‑In

for Integrating SMT Solvers into Coq”ing COQ to SMT solvers. However, we want the tool to be compatible with other
automation tactics, such as lia, by making it flexible on the preprocessed the‑
ory and not hard‑coding a particular signature in the plugin. In this section, we
explain all the objectives of the canonisation expected in this context.

5.1.1 Preprocessing of theories

The first objective of canonisation is to erase variability in the representations
of mathematical objects in COQ, due to the freedom and expressiveness of the
proof assistant language. This amounts to translating a goal that uses one or
more implementations of the signature of a theory into another goal that uses
one implementation of the signature defined as canonical. This implies knowing
how to deal individually with all the possible elements of a signature and their
occurrences in the goal. The examples consider the automation tactic lia [17] [17]: BEſſON (2006), “Fast Reflexive Arith‑

metic Tactics the Linear Case and Beyond”for linear arithmetic over integers.

Data types The canonical implementation selected by lia for the signature of
linear integer arithmetic is based on the Z type of binary integers:

5 Goal canonisation: objectives and current situation 44

Inductive Z : Set =
| Z0 : Z
| Zpos : positive Z
| Zneg : positive Z.

The chosen representation uses type positive defined in § 2.2.2.1 As this is the 1: It is in fact bin_nat with an additional
case for non‑zero negative integers.canonical type for integers, a value in Z is recognised as an integer in any exe‑

cution of the lia tactic. Conversely, integers expressed in other encodings are
not recognised as such, andmay cause the tactic to fail.2 For example, the MATH‑ 2: Here, we consider a version of lia with‑

out preprocessing. In the standard version of
COQ, this tactic comes with integrated pre‑
processing, which TRAKT improves.

COMP library provides a type int with a unary encoding that glues two copies of
the space of natural integers together:

Variant int : Set = Posz of nat | Negz of nat.

Although this multiplicity of representations offers greater freedom to the user,
the tactics remain rigid due to the choices required for implementation. The lia
tactic does not — by default — treat the values in int as integers. The desired
preprocessing phase replaces values from various encodings with values in a tar‑
get encoding. In the case of arithmetic, for example, wewant to replace values in
int with values in Z to improve lia’s support of the goal. In the case of quanti‑
fied statements, we also want the type of bound variables to change accordingly,
at least for quantifications over simple types.

Operations and constants In the desired preprocessing, the replacement of val‑
ues in a source typeby values in a target typemust be carriedout at a finer level of
granularity. It must be possible to associate an operation in the source type with
an equivalent operation in the target type. Otherwise, a value a + b in a source
type — for example int — could be translated as a single block, which would
no longer make it an addition in the target type. If the operations are associated
together, then the preprocessing tool can translate first the operation, then its ar‑
guments. This treatment also applies to constants in the source type, which can
be considered as zero‑arity operations. If the constructors of a source type can
be associated with constants and operations in the target type, then numerical
constants can be translated.

Subtyping Some goals encountered in proofs may contain types that can be
embedded in a larger target type, without being equivalent to them. This is the
case, for example, of type nat and type Z. Indeed, it canbe interesting tovisualise
natural numbers as a special case of integers in order to facilitate the work of a
proof automation tool like lia. We then expect the translated goal to contain a
property that makes the subtyping information explicit, so that this associated
statement remains provable if the original statement is.

To sum up, we consider the following goal:

forall (a b : nat), a + b = b + a

We need to be able to translate this goal into the following goal:3 3: We use the same notation + for addition
in both types, for readability.

forall (a b : bin_nat), a + b = b + a

We can see that the values are treated independently: additions are conserved
in the preprocessed goal and quantifiers are updatedwith bound variables in the
target type. If the automation tool requires the values to be expressed in a larger
target type, we expect a goal similar to this one, adding conditions to preserve
information about the positivity of a and b :

5 Goal canonisation: objectives and current situation 45

forall (a b : Z), a 0 b 0 a + b = b + a

5.1.2 Status of logic

The preprocessing tool we want to build focuses on translating the symbols of
a theory, but when translating a goal, we cannot ignore the processing of logic,
expressed through quantifications, relations, logical connectives, etc. Even in a
simple goal, the user needs logic to express what they want to prove.

Relations For example, in the last goal presented earlier, the property to prove
is an equality between two arithmetic expressions. The inductive type eq used
to represent equality is a binary relation on a given type. In the associated goal,
equalitywas changed into equality over the target type. We are therefore looking
to build a preprocessor that also substitutes relations. Note that this must be
extended to relations of arbitrary arity, including predicates, of arity 1.

Representationsof logic Theexpressivenessof COQallows logic tobeexpressed
in a variety of ways, not all of which are necessarily handled by proof automation
tactics. In general, properties can be expressed using inductive types in Prop or
Type. However, a user or library developer may use relations in other represen‑
tations in their goals, that are not recognised by all automation tactics. This is
because decidable relations are generally encoded as booleans, on which it is
easy to perform a case analysis.4 The types in the MATHCOMP library [35] come 4: As the logical system of COQ is not classi‑

cal, it is not always possible, by default, to
perform a case analysis on a value in Prop.
[35]: MAHBOUBı et al. (2021), Mathematical
Components

with definitions allowing them to be used with boolean logic — for example, an
equality test or an order relation. These boolean encodings are less likely to be
recognised by an automation tactic than their versions in Prop defined in the
COQ standard library. Preprocessing able to express logic in Prop is therefore of
interest.

Conversely, if an automation tactic involving a lower‑level logic system than that
of COQ is used, inwhich every relation is decidable, then the goal it receivesmust
expose the decidability information of the relations as much as possible. For ex‑
ample, the SMTCOQ project, targeting SMT solvers, directly maps the boolean
logic of COQ to the logic of the SMT‑LIB language used as the input format for
the solvers. Thus, the optimal input goal for the SMTCOQ automation tactic is
one where all logic is expressed in bool.

Logical connectives COQusers candeclarenew logical connectives, for example
an exclusive OR, and use them in their goals. If these connectives have a boolean
version, the preprocessing toolmust be able to target one version or the other, so
that the entire logical part of the syntax tree representing the goal is expressed in
the desired representation of logic.

To summarise, let us consider the following goal, expressed using boolean logic
and MATHCOMP integers:5 5: A coercion from bool to Prop defined in

this library for greater readability must also
be taken into account by the preprocessing
tool.

forall (x y z : int), x ? y && y ? z x ? z

Order relations, implication, and conjunction are expressed in a boolean version.
Thedesiredpreprocessing is able to translate this statement by targetingboth an‑
other representation of integers, such as Z, and an expression of logic in Prop.

forall (x y z : Z), x y y z x z

5 Goal canonisation: objectives and current situation 46

5.1.3 Polymorphismanddependent types

The expressiveness of COQ allows the user to prove very general statements that
are true for a family of types. For example, we can prove statements about a data
structure regardless of its size or the type of elements it contains. Thepreprocess‑
ing features defined previously must then be extended to this larger context, so
that these more abstract statements can also be proven by automation tools.

Polymorphism If we know how to associate a value in a type A with a value in
a type B in the output goal, it may be interesting to lift this association to a data
structure containing values in A, in order to obtain in the associated statement
a similar structure with its values in B. Thus, a list of integers list int can be
associatedwith a list of integers list Z in the associated goal, which then allows
a tactic capable of handling list theory and arithmetic in Z to prove the goal.

Without considering the exact type of values contained in a data structure, we
can also perform logical preprocessing, for example by propagating a decidable
equality through the structure to obtain one on the structure itself. The associ‑
ations between relations detailed earlier are then parameterised by other rela‑
tions.

It can also be useful to associate several data structures together. For example,
turning a list of integers in type list int into a tree of integers in type tree Z
can be done by reorganising the values in the list.

Finally, some forms of ad hoc polymorphism may be present in goals, such as
the generic notations of the MATHCOMP library, which allow the same notation to
be used for several types equipped with the same operation. For example, the
addition of MATHCOMP is noted + for all the types that actually are instances of
a ringmathematical structure, encoded by canonical structures.6 This genericity 6: Concept presented in § 3.1.2.
must not hinder the operation of the preprocessing tool.

Dependent types Besides polymorphism, some data structures are indexed by
values that are not types. For example, we can imagine a type bitvector n that
represents bit vectors of size n, where n is a natural integer in type nat. In this
case, the preprocessing of a goal containing this type is more subtle. If the data
structuredoesnot changeduringpreprocessing, then value n must remain in the
source type nat, as a change in the typewouldmake the associated goal ill typed.
If the structure changes, for example for another structure indexed by an integer
in Z, then the user must be allowed to associate such dependent structures.

5.2 The zify family: features and limits

The zify [53] tactic is a tool for preprocessing arithmetic and logical statements [53]: BEſſON (2017), “ppsimpl: a reflexiveCoq
tactic for canonising goals”for COQ, designed for the lia tactic. It is the starting point for the work on TRAKT

and a source of inspiration for certain design choices. It translates some integer
representations (nat, positive, etc.) to type Z , the representation of integers
used by the target tactic. This tactic is certifying and does not leave proof obliga‑
tions to the user. In this section, wepresent the internals of this tool and evaluate
its response to the specification defined in the previous section.

5 Goal canonisation: objectives and current situation 47

5.2.1 Modular preprocessing of arithmetic

Modularitywith respect toasingle, fixedsignature fora theorycanbe represented
by a COQ record type or a module type. Thus, for arithmetic, we could have a
record defined by a carrier type, the operations of addition, multiplication, etc.
However, to allow the user to only partially preprocess the theory, or to add new
symbols, i.e., new arithmetic operations to be taken into account, the zify tac‑
tic offers a degree of extensibility in the form of typeclasses.7 In this way, there is 7: Concept presented in § 3.1.2.
a typeclass for each category of symbols to preprocess.

All type classes instances are then exploited when traversing the original goal,
each symbol being replaced with its associated symbol, adding a subterm to the
global proof, which is eventually a proof of implication between the new goal ob‑
tained and the initial goal.

Type embeddings The first class, InjTyp, is used to declare an embedding be‑
tween two COQ types:

Class InjTyp (S T : Type) = {
φ : S T;
P : T Prop;
π : forall (x : S), P (φ x)

}.

Function φ is an injection from the source type S to the target type T. The injec‑
tion canbepartial thanks to the following two fields: P is apropertyon thevalues
of the target type, and π is a proof that any injected value respects this property.
This allows representing subtyping, such as the one of nat in Z mentioned ear‑
lier. In the case of two equivalent types, such as int and Z, the fields P and π
are filled in a trivial way, for example the following:

P _ = True
π _ = I

In the case of the partial embedding of nat into Z, the property is positivity:

φ = Z.of_nat
P (n : nat) = Z.of_nat n 0
π : forall (n : nat), Z.of_nat n 0

Symbol embedding In order for preprocessing to replace an operationwith the
associated canonical operation, classes are used for various arities: CstOp, UnOp,
BinOp. Here is the definition of the BinOp class:

Class BinOp
{S1 S2 S3 T1 T2 T3 : Type}
`{InjTyp S1 T1} `{InjTyp S2 T2} `{InjTyp S3 T3}
(op : S1 S2 S3)

= {
op' : T1 T2 T3;
π2 : forall (x1 : S1) (x2 : S2), φ (op x1 x2) = op' (φ x1) (φ x2)

}.

5 Goal canonisation: objectives and current situation 48

One links a binary operation op, defined from three types declared as embed‑
dable, to an operation op', defined with the three associated target types, by a
proof of morphism π2.

EXAMPLE 5.2.1
Here is the declaration of an embedding of addition over nat into addition
over Z :

op' = Z.add
π2 : forall (n1 n2 : nat),

Z.of_nat (n1 + n2) = Z.of_nat n1 + Z.of_nat n2

5.2.2 Preprocessing of logic

The way to handle logic in zify is similar to the arithmetic preprocessing. Just
as there are typeclasses for operations, the plugin defines typeclasses for various
arities of relationships.

Relation embedding The zify tactic is also able to preprocess homogeneous
binary relations thanks to the BinRel class:

Class BinRel {S T : Type} (R : S S Prop) `{InjTyp S T} = {
R' : T T Prop;
πR2 : forall (x1 x2 : S), R x1 x2 R' (φ x1) (φ x2)

}

So, for instance, an order relation over type positive can be embedded into the
order relation over Z :

R' = Z.ge
πR2 : forall (p1 p2 : positive), p1 p2 Zpos p1 Zpos p2

General processing of logic Other features are proposed, such as a saturation
mechanism, so as to recover properties lost during embedding, such as preser‑
vation of positivity by multiplication over natural integers, or the possibility to
declare morphisms for equivalence in Prop, to allow various logical connectives
to be handled. The preprocessing of logic in general is possible via the use of
the BinRel and BinOp classes. Indeed, boolean connectives must be declared
as binary operators of the BinOp class (with S3 = bool) and associated either to
themselves, to their version in Prop thanks to a trivial embedding of bool into
Prop, or to operators in an integer type, as some goals use boolean logic in the
middle of arithmetic computations.

EXAMPLE 5.2.2
With zify , it is possible to preprocess the following goal:

forall (n : nat), n + n n

The obtained associated goal is then the following one:

n : nat pn : Z.of_nat n 0
Z.of_nat n + Z.of_nat n Z.of_nat n

Here, the pn property represents the partiality of the embedding of n into Z.

5 Goal canonisation: objectives and current situation 49

The comparison operator used in the output goal is the one of type Z.

5.2.3 The mczify extension

There is an extension to zify called mczify [54], whosepurpose is tomanage the [54]: SAKAGUCHı (2019–2022),Micromega tac-
tics for Mathematical Componentsvarious integer types defined in the MATHCOMP library, as well as the associated

operators. It was built thanks to the extensible nature of zify, since it consists of
a series of declarations of instances of the type classes presented previously. The
declarations linked to the MATHCOMP operators make mczify a masterpiece, as
they are generic operators.

EXAMPLE 5.2.3
Thanks to the mczify upper layer, the following goal can be handled by zify :

forall (x : int), x 1 x * x x

The x * x subterm is actually @GRing.mul int_Ring x x, where GRing.mul is
the projection used to get the multiplication operation from the ring instance
int_Ring declared in the MATHCOMP library for type int. In the same way,
x 1 is actually @Order.ge int_porderType x (@GRing.one int_Ring),
where int_porderType is the instance of the MATHCOMP structure represent‑
ing order relations for type int. Note that the value 1 is also a field of the ring
structure. The declarations added by mczify thus allow usingMATHCOMP’s ad
hoc polymorphism on the theory of arithmetic and on logic, while remaining
compatible with zify.

5.2.4 Limitations of zify

It is clear that the zify tactic fulfils its role as a preprocessing tool for lia, as the
base declarations present in the plugin for the various type classes presented tar‑
get the exact set of goals recognisable by the automation tactic. The tool, like the
target tactic, is able to step under the various quantifiers and logical connectives
present in the goal, as well as preprocess the operations and signature values of
PREſBURGER arithmetic, this for the integer types of the standard library, i.e., the
most frequently used. Thanks to its extensibility, theplugin is not limited to these
reference types. As the mczify extension shows, it can be extended to the types
and operators of a custom library, including those of a certain complexity.

However, this ad hoc tool can hardly be used in a different context. For instance,
within the class of decidable goals, which are frequent in proofs and not very
interesting for humans to prove,8 lie the SMT problems, in which uninterpreted 8: It is the class of goalswhere automation is

the most expected.symbols appear, and in particular, functions.9 Several plugins for COQ can be
9: This theory is called theory of equality,
theory of congruence, or in SMT vocabulary,
UF theory (Uninterpreted Functions).

used to send these statements to SMT solvers, such as ITAUTO [55] or SMTCOQ,

[55]: BEſſON (2021), “Itauto: An Extensible In‑
tuitionistic SAT Solver”

but these interfaces also have an input signature that must be respected.10 In

10: The SMTCOQproject has a preprocessing
phase but it is basic and not very extensible.

this sense, they suffer from the same problem as the lia tactic. However, for
such statements, the tools of the zify family are insufficient by design, as they
were not created with the aim of handling these cases going beyond the logical
fragment provable by lia. For example, in the case of an uninterpreted function
f : int int applied to an integer x, the tactic zify treats term f x as a sin‑
gle value of type int. This situation is acceptable in the context of the use of lia,
as the behaviour of the tactic is aligned with that of zify, but if the associated
statement is given to an SMT solver, it may fail to prove it because of this informa‑
tion loss during preprocessing.

5 Goal canonisation: objectives and current situation 50

For example, in the case of an automation tool that would need to remove any
logical element expressed in Prop, the zify tactic would perform incomplete
processing. Indeed, although relations on integers can be replaced with their
boolean counterpart, a logical connector in Prop cannot be turned boolean, be‑
cause the BinRel class would in this case require Prop to be embeddable into
bool, which is not true in the general case. It seems interesting to give the pre‑
processing tool features for logic that are independent fromwhat is done on the
signatures of theories.

Another conceptual limitation of zify is the use of COQ terms to store user infor‑
mation. Using typeclasses allows exploiting the inference features of COQ, but
forces the developer to model their data in a COQ type, which can lack flexibil‑
ity. For example, a typeclass is needed for each possible arity on operations and
relations. In addition, it can become difficult to capture the various possible as‑
sociations between types and symbols in a same COQ type, especially if we want
to build a preprocessing tool that supports polymorphism and dependent types,
which is not the case of zify. As a result, there is a gap to be filled between the
initial goals entered into COQ by the user and proof automation tools.

EXAMPLE 5.2.4
The following goal belongs to the UFLIA11 11: Uninterpreted Functions and Linear Inte‑

ger Arithmetic.
theory:

forall (f : int int) (x : int), f (2 * x) ? f (x + x)

It is theoretically provable by an SMT solver, but it is outside the fragment ac‑
cepted by the tactics of the zify family. Without preprocessing, the plugins in
charge of delegating proofs to an SMT solver cannot prove it. The aim of TRAKT
is to bridge the gap between this kind of goals and these plugins.

Theoreticalmode of operation 6
6.1 Gathering user information . 51
6.1.1 Type embeddings 51
6.1.2 Logical embeddings 52
6.1.3 Symbol embeddings 53
6.1.4 Conversion keys 53
6.2 Preprocessing algorithm . . . 54
6.2.1 Handling universal quantifiers 54
6.2.2 Handling logical connectives . 56
6.2.3 Theory‑specific preprocessing 58
6.2.4 The trakt tactic 59

The first prototype developed in this thesis, TRAKT [12]

[12]: BLOT et al. (2023), “Compositional pre‑
processing for automated reasoning in de‑
pendent type theory”

, is a tool for preprocessing
by goal canonisation in COQ, with the aim of extending the preprocessing carried
out by the zify tactic to statements from the SMT family. We therefore want to
go beyond the limits of zify without introducing any regression in the features
already present. This chapter looks at how canonisation is carried out in TRAKT.
First, we list the kinds of information that the user can provide to the tool (§ 6.1),
then we detail the algorithm used to solve the theoretical problem (§ 6.2).

6.1 Gathering user information

Canonisation is only made possible by the knowledge of the various existing em‑
beddings that start from the terms found in the input goal given to the prepro‑
cessing tool. TRAKT allows different kinds of information to be declared: type
embeddings, logical embeddings, symbol embeddings, and conversion keys.

6.1.1 Type embeddings

As explained in § 3.3.2, to perform proof transfer, it is necessary to define a rela‑
tion between source and target types. In TRAKT, this relation is bijection, and it is
defined for inductive types with no parameters or indices, such as integer types.
We declare that a type 𝐴 can be embedded into a type 𝐵 when there is a bijec‑
tion between them:1 1: We denote as ≑ pointwise equality, i. e.,

𝑓 ≑ 𝑔 ∶= Π𝑥. 𝑓 𝑥 = 𝑔 𝑥Σ(𝜙 ∶ 𝐴 → 𝐵)(𝜓 ∶ 𝐵 → 𝐴). (𝜓 ∘ 𝜙 ≑ id) × (𝜙 ∘ 𝜓 ≑ id)

A command is provided for the user to declare this information:2 2: Here, π1 and π2 represent the section
and retraction proofs showing that φ and ψ
are inverses of each other — respectively the
first and second proofs of the pair under the
Σ‑type here on the left.

Trakt Add Embedding A B φ ψ π1 π2.

This declaration allows embedding any value of type 𝐴 or any functional type
containing 𝐴 into the associated target type. For example, a function of type
𝐴 → 𝐴 can be embedded as a value of type 𝐵 → 𝐵. In particular, TRAKT is able
to handle uninterpreted symbols present in statements of the SMT class, as well
as universally quantified variables having a type eligible for embedding.

Partialembeddings Thereare relevant instancesofpreprocessing forwhich the
two embeddings functions are not inverses. This is the case for the embedding
of ℕ into ℤ for example, where the pseudo‑inverse embedding function is not
injective since it associates a default value to negative integers, as they have no
equivalent in the space of natural numbers. In this case, we can only prove a
weakened version of retraction, in which the property is only true on values for
which 𝜓 does not truncate, i.e., if there is an antecedent in 𝐴 for these values.
In the case of the embedding of ℕ into ℤ, this condition called embedding condi-
tionwill bepositivity. Theembedding condition is representedbyadditional data

6 Theoretical mode of operation 52

in the proof supplied by the user: the condition and a proof that any embedding
from 𝐴 respects it. A partial embedding is therefore defined as follows:

Σ(𝜙 ∶ 𝐴 → 𝐵)(𝜓 ∶ 𝐵 → 𝐴)(𝑃 ∶ 𝐵 → ℙ).
(𝜓 ∘ 𝜙 ≑ id) × (Π𝑏 ∶ 𝐵. 𝑃 𝑏 → 𝜙 (𝜓 𝑏) = 𝑏) × (Π𝑎 ∶ 𝐴. 𝑃 (𝜙 𝑎))

The command to add type embeddings to TRAKT accepts partial embeddings:3 3: Here, π2P is the proof of conditional re‑
traction and πP is the proof that any embed‑
ding from A verifies the embedding condi‑
tion.

Trakt Add Embedding A B φ ψ P π1 π2P πP.

When embedding a variable, the condition will be made explicit so that it is al‑
ways possible to prove that the final goal implies the initial goal. Thus, an unin‑
terpreted function 𝑓 ∶ ℕ → ℕ will be replaced with a function 𝑓 ′ ∶ ℤ → ℤ
packed with the following property:

Π𝑥 ∶ ℤ. 𝑥 ≥ 0 → 𝑓 ′ 𝑥 ≥ 0

6.1.2 Logical embeddings

In a statement of the SMT class, the subterms contained in one of the processed
theories are atoms in the tree that represents the logical formula, the nodes of
this tree being the logical connectives, equalities, and other predicates of arbi‑
trary arity. Depending on the automation tactic targeted after the use of TRAKT,
these predicates must also be translated, either to a boolean version or to a ver‑
sion in ℙ. TRAKT allows declaring an embedding between two predicates 𝑃 and
𝑄 of the following types, where each type 𝑇 ′

𝑖 is either 𝑇𝑖 itself, or an embedding
from 𝑇𝑖 :

𝑃 ∶ 𝑇1 → ⋯ → 𝑇𝑛 → 𝐿
𝑄 ∶ 𝑇 ′

1 → ⋯ → 𝑇 ′
𝑛 → 𝐿′

The declaration is made by proving an equivalence between both predicates:

Π𝑥1 ⋯ 𝑥𝑛. 𝑃 𝑥1 ⋯ 𝑥𝑛 ⋈𝐿,𝐿′ 𝑄 (𝜙?
1 𝑥1) ⋯ (𝜙?

𝑛 𝑥𝑛)

𝐿 𝐿′ ⋈𝐿,𝐿′

𝔹 𝔹 =
ℙ 𝔹 𝜆𝑃 𝑏. 𝑃 ↔ 𝑏 = 1𝔹
𝔹 ℙ 𝜆𝑏 𝑃 . 𝑏 = 1𝔹 ↔ 𝑃
ℙ ℙ ↔

The logical codomains of the predicates 𝐿 and 𝐿′ are either ℙ or 𝔹, and ⋈𝐿,𝐿′

is a way to express equivalence depending on these codomains. 𝜙?
𝑖 designates

an embedding function between 𝑇𝑖 and 𝑇 ′
𝑖 that is optional at the meta level: if

both types are identical, this term is absent.

EXAMPLE 6.1.1
In the case of an embedding of equality over type int into boolean equality
over Z, the proof to be declared to TRAKT has the following type:

forall (x y : int), x = y Z_of_int x =? Z_of_int y = true

In this goal, Z_of_int is the embedding function from int to Z and =? is the
boolean equality over Z.

The command available to the user for declaring logical embeddings is:

6 Theoretical mode of operation 53

Trakt Add Relation n P Q πL.

Value n is the arity of the declaredpredicates,4 P and Q are the source and target 4: This information is required so that it is
possible to declare particular relations ex‑
pressed in several terms, such as equality,
which takes a type argument.

relations, and πL is the proof of equivalence between the two predicates.

6.1.3 Symbol embeddings

Thebasis of amathematical theory is oftena setwithoperations. The signatureof
a theory in COQ is therefore a type called carrier alongwith values andoperations
defined over this type. Type embedding makes it possible to manage variability
on the carrier types in the various goals, but the symbols from the signature still
need to be processed. To that end, TRAKT also makes it possible to declare em‑
beddings between the various symbols, of any arity, by giving a source symbol
and a target symbol, as well as the morphism property:

𝑠 ∶ 𝑇1 → ⋯ → 𝑇𝑛+1
𝑠′ ∶ 𝑇 ′

1 → ⋯ → 𝑇 ′
𝑛+1

Π𝑥1 ⋯ 𝑥𝑛. 𝜙?
𝑛+1 (𝑠 𝑥1 ⋯ 𝑥𝑛) = 𝑠′ (𝜙?

1 𝑥1) ⋯ (𝜙?
𝑛 𝑥𝑛)

EXAMPLE 6.1.2
We can embed addition over type nat into addition over Z by giving a proof
of the statement from Example 5.2.1, and the zero of nat into the one of Z by
making explicit for TRAKT that Z.of_nat O = Z0.

The declaration of a symbol is done through the following command:

Trakt Add Symbol S S' πS.

Values S and S' are the source and target symbols, and πS is the morphism
proof.

6.1.4 Conversion keys

For performance reasons in the implementation, the default term recognition in
TRAKT is purely syntactic. However, in order to keep the additional features pro‑
videdby mczify andpresented in Example 5.2.3, if the user declares embeddings
of concrete operations that are then packaged into structures, the preprocessing
toolmust be able to detect that generic projections available for these structures
yield the same terms as the ones previously declared. It is therefore necessary
to be able to use COQ conversion locally for these terms, that we call conversion
keys.

In Example 5.2.3, if the user declares an embedding from concretemultiplication
over type int , then using generic notations in the goals should not impact pre‑
processing. Therefore, @GRing.mul int_Ring must be preprocessed as if the con‑
creteoperationhadbeenused there,which is possiblebydeclaring GRing.mul as
a conversion key. Such behaviour is possible because the projection reduces pre‑
cisely to the concrete operation. The type of the proof will thus not be invalid.

The command used to declare conversion keys is the following:

Trakt Add Conversion K.

where K is the term to declare as a conversion key.

6 Theoretical mode of operation 54

6.2 Preprocessing algorithm

Using all the information provided to TRAKT by the user, the tool is able to prepro‑
cess the input goal. This section details how the preprocessing algorithm works
onuniversal quantifiers, logical connectives and the subtermsbelonging to a the‑
ory, before presenting the trakt tactic that implements it.

The algorithm takes a goal to be preprocessed as input, and is parameterised by
the target type desired by the user to express logic as well as the target type for
the theory tobepreprocessed in the goal. It thengenerates anoutput goal aswell
as a proof that it implies the input goal. Due to the polarity of logical connectives,
on some subterms this proof of implication must be generated in the opposite
direction, a subtlety handled by the algorithm.

Unlessexplicitly stated, in theexamples,weconsideranembedding towards type
Z and logic expressed in Prop.

6.2.1 Handling universal quantifiers

The first construction encountered in a goal to be preprocessed is often a univer‑
sal quantifier. This case is handled by a recursive call on the subterm, yielding
a proof, and a combinator to extend this proof to the quantifier. On the other
hand, the type of the variable bound in the new goalmustmakemaximumuse of
the type embeddings declared by the user, functional types also being taken into
account, as explained in § 6.1.1. The proof generation process therefore acts dif‑
ferently depending on the type of the bound variable before and after translation,
and the polarity at the time of translating the quantifier.

Unchanged type If the type of the bound variable does not change, then we
must prove

Π𝑥 ∶ 𝐴. 𝐵′ → Π𝑥 ∶ 𝐴. 𝐵

from the proof 𝑝 ∶ 𝐵′ → 𝐵 obtained on the subterm.5 The combinator to use is 5: The contravariant case swaps 𝐵 and 𝐵′

in the types of the proofs.the following, regardless of the polarity:

𝜆(𝐻 ∶ Π(𝑥 ∶ 𝐴). 𝐵′)(𝑥 ∶ 𝐴). 𝑝 (𝐻 𝑥)

Embedded type, covariant case If the type changes, then all occurrences of vari‑
able 𝑥 are subject to a 𝜙𝐴⇝𝐴′ embeddingwhen the subterm is translated.6 The 6: Here, 𝜙𝑇 ⇝𝑇 ′ is a combinator adding all

the necessary embedding functions from the
potentially functional type 𝑇 to the associ‑
ated type 𝑇 ′.

output subterm at the level of the quantifier is therefore obtained by ignoring
these embedding functions, i.e., by replacing all occurrences of 𝜙𝐴⇝𝐴′ 𝑥 with
a variable 𝑥′ of the same type 𝐴′, in order to obtain a new subterm depending
only on the new variable 𝑥′ and to be able to close the quantified term. Thus, in
the covariant case, the proof to be provided at the level of the quantifier is

Π𝑥′ ∶ 𝐴′. 𝐵″ → Π𝑥 ∶ 𝐴. 𝐵

and we start from a proof 𝑝 ∶ 𝐵′ → 𝐵 .7 Here, 𝐵″ is the translation of subterm 7: The case of partial embeddings is ex‑
plained in the next paragraph.𝐵′ in which we have replaced the embeddings of 𝑥 with 𝑥′ .8 Consequently,
8: 𝐵″ ≡ 𝐵′[𝜙𝐴⇝𝐴′ 𝑥 ∶= 𝑥′]the combinator can instantiate the hypothesis with the embedding of variable

6 Theoretical mode of operation 55

𝑥 , providing a proof of 𝐵″[𝑥′ ∶= 𝜙𝐴⇝𝐴′ 𝑥] ≡ 𝐵′ . Proof 𝑝 can then be applied
directly. The new combinator is as follows:

𝜆(𝐻 ∶ Π(𝑥′ ∶ 𝐴′). 𝐵″)(𝑥 ∶ 𝐴). 𝑝 (𝐻 (𝜙𝐴⇝𝐴′ 𝑥))

In the case where explicitly casting 𝑥 from 𝐴 to 𝐴′ involves a partial embed‑
ding, the bound variable 𝑥′ in the output goal must come with a property 𝑃 𝑥′

combining various embedding conditions defined in § 6.1.1. The proof to be pro‑
vided is therefore the following:

Π𝑥′ ∶ 𝐴′. 𝑃 𝑥′ → 𝐵″ → Π𝑥 ∶ 𝐴. 𝐵

As the combinator instantiates 𝑥′ with the embedding of 𝑥 , the property is al‑
ways true, by composition of the proofs supplied by the user.9 If we denote this 9: Value πP in each declaration of partial em‑

bedding.proof combination 𝜋∗
𝑃 , the combinator in the case of partial embeddings is the

following:

𝜆(𝐻 ∶ Π(𝑥′ ∶ 𝐴′). 𝑃 𝑥′ → 𝐵″)(𝑥 ∶ 𝐴). 𝑝 (𝐻 (𝜙𝐴⇝𝐴′ 𝑥) (𝜋∗
𝑃 𝑥))

Consider the following statement, representingaproof that a function is constant
by recurrence on its domain, natural numbers:

forall (f : nat nat) (k : nat),
f O = k (forall (n : nat), f (S n) = f n)
forall (n : nat), f n = k

During a preprocessing phase where nat has been declared embeddable into Z,
the first quantifier is changed into a new bound variable f' : Z Z alongwith
a property combining twice the embedding condition of nat into Z :

forall (x' : Z), x' 0 f' x' 0

In the proof for the quantifier, this property is proved thanks to the fact that the
concrete value for f' is a composition of f with the embedding functions be‑
tween nat and Z :

f' = fun (x : Z) Z.of_nat (f (Z.to_nat x))

In particular, any application of f' to a term t can be seen as the application of
Z.of_nat to f (Z.to_nat t), so it is positive thanks to the proof of the embed‑
ding condition given when declaring the embedding from nat to Z :

forall (n : nat), Z.of_nat n 0

Embedded type, contravariant case 10. 10: Here, we only deal with the case of par‑
tial embedding, the other cases can be ob‑
tained by simplifying it.The contravariant case removes the need to prove the embedding conditions,

as the implication has to be proved in the other direction, and they become ad‑
ditional hypotheses rather than arguments to be provided to use a hypothesis.
However, these conditions are still useful for eliminating embedding identities
appearing when hypotheses are instantiated. Indeed, the proof to build has the
following type:

Π𝑥 ∶ 𝐴. 𝐵 → Π𝑥′ ∶ 𝐴′. 𝑃 𝑥′ → 𝐵″

The combinator therefore has at its disposal a variable 𝑥′ ∶ 𝐴′ as well as a proof
of 𝑃 𝑥′, and it must instantiate a hypothesis 𝐻 ∶ Π(𝑥 ∶ 𝐴). 𝐵. The solution is
the inverse embedding of 𝑥′, that can be written as 𝜓𝐴⇜𝐴′ . We then obtain a

6 Theoretical mode of operation 56

proof of 𝐵[𝑥 ∶= 𝜓𝐴⇜𝐴′ 𝑥′], knowing that we have the proof on the subterm
𝑝 ∶ 𝐵 → 𝐵′. Note that 𝑝 is built from variable 𝑥 obtained by going under
the quantifier, so it can be expressed as a function of 𝑥. Thus, by substituting
𝜓𝐴⇜𝐴′ 𝑥′ for 𝑥 in 𝑝 by a meta‑level operation, we can apply this proof to the
hypothesis instantiated earlier with this same inverse embedding value, yield‑
ing a proof of 𝐵′[𝑥 ∶= 𝜓𝐴⇜𝐴′ 𝑥′]. However, we still have to prove 𝐵″, i.e.,
𝐵′[𝜙𝐴⇝𝐴′ 𝑥 ∶= 𝑥′] by definition.

To unify these two types, we can note that as the substitution performed in the
first type replaces the occurrences of 𝑥 with the inverse embedding of 𝑥′, it also
replaces theoccurrencesof theembeddingof 𝑥 byacompositionof embeddings
applied to 𝑥′ :

𝑥 ∶= 𝜓𝐴⇜𝐴′ 𝑥′ ⟹ 𝜙𝐴⇝𝐴′ 𝑥 ∶= (𝜙𝐴⇝𝐴′ ∘ 𝜓𝐴⇜𝐴′) 𝑥′

Thanks to the proof of the embedding condition available for 𝑥′ , we can system‑
atically rewrite this composition into an identity wherever it appears in the proof
of 𝐵′[𝑥 ∶= 𝜓𝐴⇜𝐴′ 𝑥′], and the final proof obtained is indeed 𝐵″. The contravari‑
ant combinator is therefore as follows:

𝜆(𝐻 ∶ Π(𝑥 ∶ 𝐴). 𝐵)(𝑥′ ∶ 𝐴′)(𝑐 ∶ 𝑃 𝑥′). 𝜋rw
𝑐 (𝑝[𝑥 ∶= 𝜓𝐴⇜𝐴′ 𝑥′] (𝐻 (𝜓𝐴⇜𝐴′ 𝑥′)))

where 𝜋rw
𝑐 is the rewrite proof of all compositions 𝜙𝐴⇝𝐴′ ∘ 𝜓𝐴⇜𝐴′ into identi‑

ties in the type of the argument, using the proof for which 𝑐 is the witness.

Let us take a simple statement over any natural number:

forall (n : nat), n * O = O

Its preprocessing yields the following statement:

forall (n' : Z), n' 0 n' * 0 = 0

A contravariant proof gives proof p : n * O = O Z.of_nat n * 0 = 0 on the
subterm. The necessary proof to allow goal substitution is the following:

H : forall (n : nat), n * O = O
n' : Z
c : n' 0

n' * 0 = 0

As explained above, we build a new proof based on p by replacing variable n
with Z.to_nat n' , and we apply it to H (Z.to_nat n') . We obtain a proof of

Z.of_nat (Z.to_nat n') * 0 = 0

and proof c of the embedding condition on n' allows us to rewrite this embed‑
ding composition into an identity thanks to a user lemma,11 and conclude. 11: Value π2P when declaring the partial em‑

bedding.

6.2.2 Handling logical connectives

Initially, the algorithm traverses the quantifiers as well as the logical parts of the
goal, i.e., the various logical connectives, until it reaches the predicates or rela‑
tions marking the transition to the subterms specific to a theory. At the level of
each connector, an associated proof is applied, enabling one or more recursive
calls to bemade on the subterms. Since the aim is to generate a proof of implica‑
tionbetweenbothgoals, weusemorphismproperties of implicationwith respect

6 Theoretical mode of operation 57

to logical connectives. Thus, the construction of a proof of implication by travers‑
ing a 𝐾 𝑃1 ⋯ 𝑃𝑛 connector can be done from the proofs of implication built on
the 𝑃𝑖 arguments, in one direction or the other depending on the polarity of the
position of each argument for this connector.

The expected morphism lemma for 𝐾 has the following type:

Π𝑃1 ⋯ 𝑃𝑛 𝑃 ′
1 ⋯ 𝑃 ′

𝑛.
(𝑃1 ⋄𝐾

1 𝑃 ′
1) → ⋯ → (𝑃𝑛 ⋄𝐾

𝑛 𝑃 ′
𝑛) → (𝐾 𝑃 ′

1 ⋯ 𝑃 ′
𝑛 → 𝐾 𝑃1 ⋯ 𝑃𝑛)

where ⋄𝐾
𝑖 ∶= {

→ if position 𝑖 is covariant for connector 𝐾
← otherwise

Preprocessing a disjunction A B amounts to generating A' and B' respec‑
tively as well as a proof of A' B' A B from subterms A and B. In this
case, TRAKT uses a lemma showing that implication is a morphism for disjunc‑
tion:

Lemma or_impl_morphism : forall (A B A' B' : Prop),
(A' A) (B' B) (A' B' A B).

This is an instance of the general case above, where ⋄∨
𝑖 = → for all 𝑖 and 𝑛 = 2

becauseall positions are covariant, whereas in the caseof an implication, the first
argument would be in a contravariant position.

Handlingbooleanlogic If the target logical type isdifferent fromthe logical type
of the inspected connector, then an attempt ismade to express all the arguments
of the connector in the target type. If this is possible, then we can replace the
connector with its associated version by adding an implication lemma between
both.

If we target bool for logic and the goal contains a disjunction in Prop, we attempt
to pre‑process each argument into a Boolean injected into Prop. Where possible,
we can apply the following lemma that allows us to use boolean disjunction
in the output goal:

Lemma orb_or_impl : forall (b1 b2 : bool),
b1 b2 = true b1 = true b2 = true.

By induction, it is thuspossible to transfer anentire logical tree from Prop to bool
or vice versa, when all the atoms allow it.

Logical atoms The term is traversed until a logical atom is found, i.e., either
True or False, or a predicate declared in TRAKT under which terms contained
in the theory to be preprocessed can be found. This is the case of logical em‑
beddings defined in § 6.1.2, where the proof given by the user is a logical equiv‑
alence from which a proof of implication can be obtained. In the case where the
arguments of the predicate are in a type eligible for an embedding, the version
of the relation used in the output goal introduces embeddings in front of these
subterms, paving the way for the specific preprocessing detailed in the next sub‑
section.

6 Theoretical mode of operation 58

We consider the following goal:

forall (x : int), x = x

We assume that the user has given a proof of embedding from equality over int
into boolean equality over Z, presented in Example 6.1.1. From this proof, we can
get an implication in the desired direction— here, we assume the direction to be
covariant:

forall (x y : int), Z_of_int x =? Z_of_int y = true x = y

So,whengoing through this node,we justify the transition to the target relation—
boolean equality — and launch two recursive preprocessing calls on Z_of_int x,
on either side of the equality.

6.2.3 Theory-specific preprocessing

Once it is under the logical atoms, the aim of TRAKT is to embed as many values
as possible into the desired target type. The algorithmwill therefore inspect each
node and exploit the variousmorphismproofs declared by the user. All unknown
values are traversed and left untouched.

Embedding function descent Inspired by zify, the preprocessing algorithm of
TRAKT introduces embedding functions as soonaspossible into the initial goal be‑
fore pushing them towards the leaves of the term. These embedding functions
are the trigger for all the rewrites. This is becausemorphism lemmas are used to
replace their left‑hand member in the input term with their right‑hand member
in the output term, and the left‑handmember has a leading embedding function
where possible. The introduction of an embedding, for example by means of a
predicate equivalence proof, allows all themorphism lemmas to be used in a cas‑
cade down to the leaves of the tree.

EXAMPLE 6.2.1
Consider the following goal:

forall (x y : int), x * y + x = x * (y + 1)

If the user has declared a logical embedding from equality over type int to
equality in Prop over type Z for example, then the equivalence proof allows
the algorithm to be launched on the twomembers of the equality preceded by
an embedding function. If all the operations have been declared embeddable
into their counterparts in Z, then the left‑handmemberwill undergo this list of
rewritings, pushing all the embedding functions down:

Z_of_int (x * y + x)
Z_of_int (x * y) + Z_of_int x
Z_of_int x * Z_of_int y + Z_of_int x

All the equality proofs are extended to the logical atom inwhich they are used, so
that they can be composed by transitivity and turned into a single equality proof
between the input and output logical atoms.

When the type of one of the arguments of a non‑interpreted function is embed‑
dable, in order to preprocess this argument correctly, an embedding identity is
inserted in front of this argument.12 This ensures that the argument is preceded 12: Here, we use the first identity provided

by the user, which is unconditionally true for
any embedding:

𝜓 ∘ 𝜙 ≑ id

6 Theoretical mode of operation 59

by an embedding function before being preprocessed by TRAKT.

Handlingthe leavesof thetree At the leaves of the tree, TRAKT removes asmany
embeddings as possible to obtain an output goal expressed entirely in the target
type. These leaves are either zero‑arity constants or variables.

In the first case, the proof provided with the constant allows erasing the remain‑
ing embedding in favour of a new constant in the target type. This is the case
in Example 6.1.2 where the zero of type nat is embedded into the one of type Z
using a lemma involving an embedding on the left‑handmember.

In the second case, that of a variable 𝑥 ∶ 𝑇 , if type 𝑇 can be embedded into
𝑇 ′, then the variable is necessarily the argument of a composition of embedding
functions 𝜙𝑇 ⇝𝑇 ′ . It then suffices to replace the term 𝜙𝑇 ⇝𝑇 ′ 𝑥 with the output
variable 𝑥′ ∶ 𝑇 ′. This substitution is valid, the corresponding proof being per‑
formed when the output goal is closed. Indeed, repositioning the new quantifier
above a translated open term 𝑡′, containing embeddings on variable 𝑥, amounts
to extending a proof of 𝑡′ → 𝑡, obtained by a recursive call, to the following im‑
plication between the quantified types:

Π𝑥′ ∶ 𝑇 ′. 𝑡′[𝜙𝑇 ⇝𝑇 ′ 𝑥 ∶= 𝑥′] → Π𝑥 ∶ 𝑇 . 𝑡

EXEMPLE 6.2.2
Going back to the goal of the previous example, descending the embedding
functions in the twomembers of the equality gives the following two terms:

Z_of_int x * Z_of_int y + Z_of_int x
Z_of_int x * (Z_of_int y + Z_of_int 1)

To complete the preprocessing, we apply the lemma allowing us to rewrite the
value 1 in type int into its counterpart in Z, and we close the term with new
quantifiers x' and y', to obtain the following final goal:

forall (x' y' : Z), x' * y' + x' = x' * (y' + 1)

6.2.4 The trakt tactic

The algorithm presented above has been implemented in the form of a tactic
trakt. As soon as we switch to proofmode, we call trakt to preprocess the goal,
before letting an automated proof tactic finish the proof.

This tactic takes two arguments corresponding to the parameters of the algo‑
rithm: the target type for the theorybeingprocessedand the type toexpress logic.
Thus, if integers are expressed in Z and logic in Prop, we will call the tactic with
these arguments.

Several of the arithmetic goals presented in this part can be proved using various
declarations and the following tactic combination:

Proof. trakt Z Prop; lia. Qed.

When the goal requires the theory of equality, we can use a tactic calling an SMT
solver insteadof lia, suchas the smt tactic fromSMTCOQor theoneof the ıTAUTO
project.

6 Theoretical mode of operation 60

It is also possible to preprocess a goal just to rewrite its logical part, omitting the
first argument. We then switch to a boolean goal by calling trakt bool.

In the case of a theory for which the only relevant preprocessing before using an
automated proof tool is to exploit the decidability of predicates, there is no need
to activate the theory‑specific pre‑processing features of TRAKT. We therefore re‑
strict the tool to a logical preprocessing by removing the first argument.

A priori, the information supplied to TRAKT must be terms declared before the
proof, as this information is stored in a database that persists after the proof has
been completed. However, in certain proofs, it may be relevant for some infor‑
mation to bemade known to TRAKT, particularly relations. The tool has a feature
to cover this case, with a new syntax:

trakt T L with rel (R, R', πR).

where T and L are the target types for theory and logic, and the triplet corre‑
sponds to a relation declaration as presented in § 6.1.2.

The most telling example to illustrate the need for this feature is decidability of
a relation on a local type. Indeed, if a goal quantifies over a type 𝐴 and there is
information implying, for instance, that equality over 𝐴 is decidable, then itmay
be relevant to introduce it into the proof context, make the decidability proof ex‑
plicit, and call trakt with this additional piece of information, in order to prepro‑
cess the rest of thegoal andperhapsobtainaproof that is simpler to complete.

Finally, as the algorithm implemented in the trakt tactic allows reasoning in
both directions thanks to the polarity management described previously, it can
beused for forward chainingpreprocessingwithout any additional effort. We can
therefore preprocess a hypothesis rather than the goal, this time by generating a
proof of implicationof thenewhypothesis fromtheoldone. The syntaxproposed
by TRAKT in this case is the following:

trakt_pose T L : H as H'.

where H is the hypothesis to be preprocessed and H' the name tobe used for the
new hypothesis obtained. The other features of TRAKT are also available in this
direction.

Conclusion andperspectives 7
7.1 Ecosystem of automation

tools for COQ 61
7.1.1 The need for preprocessing . . 61
7.1.2 Modular transformations of the

scope tactic 63
7.2 Success of the plugin 64
7.2.1 Examples of goals handled . . 65
7.2.2 Integration of TRAKT with other

tools 66
7.3 Paths of improvement 67
7.3.1 Polymorphism and dependent

types 67
7.3.2 Architecture of the preprocess‑

ing phase 68

The TRAKT plugin, whose concepts were presented in the previous chapter, has
been implemented in COQ.1

1: The questions related to this implementa‑
tion are dealt with in § 12.

This chapter evaluates this tool that completes an
ecosystem of automation tools available to the COQ user (§ 7.1) and can interact
with some of them. TRAKT improves on zify’s answer to the problem of prepro‑
cessing by canonisation for statements in the SMT class (§ 7.2). The plugin is par‑
tially aligned with the specification defined in § 5, but it also has some flaws and
could be improved (§ 7.3).

7.1 Ecosystemof automation tools for COQ

Without automation, software as complex as a proof assistant cannot be used
properly. There are an increasing number of assistance tools to help the user in
the proofs. Thus, TRAKT fits into an ecosystem of tools used either to automati‑
cally prove goals or to preprocess themso that other automation toolswork even
better. In this section, we outline the difficulty of performing proofs in COQ and
the need for preprocessing, citing a few proof automation tools that TRAKT can
work with; then we quickly introduce scope, another preprocessing tactic that
can associate with TRAKT.

7.1.1 The need for preprocessing

Technical yet uninteresting proof steps are the daily bread of program verifica‑
tion. Fortunately,manyelementary statements are easily solvedbymodernauto‑
mated provers. The corresponding formal proof steps can in turn be automated,
e.g., using hammers, a powerful architecture for connecting external automated
theorem provers with formal interactive proof environments. For instance, the
COQHAMMER [40] plugin equips COQwith an instance of hammer, providing a tac‑ [40]: CZAJKA et al. (2018), “Hammer for Coq:

Automation for dependent type theory”tic called hammer that combines heuristics with calls to external provers for first‑
order logic, so as to obtain hopefully sufficient hints, including relevant lemmas
from the current context, to prove the goal. The actual formal proof is then re‑
constructed from these hints thanks to variants of the sauto tactic and hammer
outputs a corresponding robust and oracle‑independent proof script.

For example, consider a property on the length of the reversed concatenation of
two lists:

Lemma length_rev_app : forall (B : Type) (l l' : list B),
length (rev (l l')) = length l + length l'.

This lemma can be provedwith COQHAMMER, which provides the following script,
using auxiliary lemmas app_length and rev_app_length from the section of the
standard library dealing with lists:

Proof. scongruence use: app_length, rev_length. Qed.

Yet, as of version 1.3.2, COQHAMMER is not designed to exploit any theory‑specific
reasoning, and thus cannot prove this slight variant, where b l' replaces l',
because it lacks arithmetical features:

7 Conclusion and perspectives 62

Lemma length_rev_app_cons : forall (B : Type) (l l' : list B) (b : B),
length (rev (l (b l'))) = length l + length l' + 1.

In this case, users may resort to the SMTCOQ plugin, implementing a certificate
checker for proofwitnesses output by SMT solvers. The latter automated provers
are indeed tailored for findingproofs combiningpropositional reasoning, congru‑
ence and theory‑specific decision procedures, e.g., for linear arithmetic. How‑
ever, none of COQHAMMER or SMTCOQ can in general reason by case analysis or
induction.

A variant of the sauto tactic can very well prove the first goal below about list
concatenation, but not the second one in which the first list is reversed:

Lemma app_nilI : forall (B : Type) (l l' : list B),
l l' = [] l = [] l' = [].

Lemma app_nil_rev : forall (B : Type) (l l' : list B),
rev l l' = [] l = [] l' = [].

The SMTCOQ plugin can be used to prove properties of linear integer arithmetic,
but only when they are stated using the type Z of integers from COQ’s standard
library:

Lemma eZ : forall (z : Z), z 0 z < 1 z = 0.

Up to version 2.0, SMTCOQ is however clueless about any alternative instance of
integer arithmetic, e.g., the type int of unary integers from the MATHCOMP li‑
brary, already mentioned previously.

Lemma eint : forall (z : int), z 0 z < 1 z = 0.

Fortunately, COQ distributes the lia tactic, specific to linear integer arithmetic,
that canactuallyalsoprove lemmassuchas eZ.Moreover, lia canbecustomised
to a user‑defined instance of arithmetic thanks to the zify dedicated prepro‑
cessing, presented in § 5.2. Once correctly configured for type int thanks to the
mczify extension, lia is equally powerful on type int or type Z andprovesboth
eZ and eint. However, as powerful as it may be on integer linear arithmetic, the
tactic is by nature unawareof the theory of equality. Hence, although it canprove
equality eintC frombelow, it is unable to prove the variant cong_eintC, because
the latter involves a congruence with the _ nil operation, alien to the theory
of linear integer arithmetic.

Lemma eintC : forall (z : int), z + 1 = 1 + z.
Lemma cong_eintC : forall (z : int), (z + 1) nil = (1 + z) nil.

Proving the property expressed by cong_eintC requires combining different the‑
ories, in this case integer arithmetic and the theory of equality, as SMT solvers do.
Yet, in this case aswell, theSMTCOQplugin cannot help, because the statement of
this fact is phrased using type int instead of Z. The recent ıTAUTO SAT solver [55], [55]: BEſſON (2021), “Itauto: An Extensible In‑

tuitionistic SAT Solver”implemented in COQ, provides an alternate take on formally verified satisfiability
modulo theory, and organises the cooperation between the independent tactics
lia, for integer arithmetic, and congruence, for equality. As a consequence, the
smt tactic built on top of ıTAUTO can benefit from lia’s preprocessing facilities.
For instance, as soon as lia’s preprocessing is correctly configured for type int,
the smt tactic is able to prove lemma cong_eintC.

However, lia’s preprocessing facilities are not known to the rest of the SMT de‑
cision procedure. Thus, although the first goal below is solved by the latter smt
tactic, because lia has been informed of the boolean equality test available

7 Conclusion and perspectives 63

on type int, the same tactic fails on the cong_eintCb variant, featuring an unin‑
terpreted symbol f :

Lemma eintCb : forall (z : int), (z + 1 1 + z) = true.
Lemma cong_eintCb : forall (f : int int) (z : int),
(f (z + 1) f (1 + z)) = true.

As it turnsout, althougha variety of tactics implementing automated reasoning is
available to the users of the COQ proof assistant, finding the appropriate weapon
for attacking a given goal remains challenging. It is often quite difficult to antic‑
ipate the exact competence of tactics based on first‑order automated reasoning,
and to interpret failure. As a consequence, large‑scale formalisation endeavours
may end up developing their own specific automation tools, like the list_solve
tactic in the VERıFıED SOFTWARE TOOLCHAıN [56, 57], for automating reasoning [56]: APPEL (2011), “Verified Software

Toolchain ‑ (Invited Talk)”

[57]: APPEL et al. (2022), Verifiable C

about lists and arithmetic, which makes the number of available tactics multi‑
ply even more, often redundantly. A form of generic preprocessing such as that
targeted by TRAKT therefore seems ideal tomake existing automation toolsmore
flexible.

7.1.2 Modular transformations of the scope tactic

The scope [12] tactic is a combination of various preprocessing tactics with the [12]: BLOT et al. (2023), “Compositional pre‑
processing for automated reasoning in de‑
pendent type theory”

objective of reducing the COQ statements belonging to the SMT fragment to the
logical theory handled by SMT solvers, living at a lower level.2 The preprocessing

2: For example, quantifiers are in prenex po‑
sitions and there are no dependent types.

performed by scope is orthogonal and complementary to the features of TRAKT,
so the two tools canwork together in preprocessing SMT goals. Here, we present
three of the transformations performed by scope : generation of the inversion
principle for inductive relations, pattern matching elimination, and hypothesis
monomorphisation.

Inversion principle for inductive relations An inductive relation is an inductive
type representinga relationbetween terms,whosecodomain isoften Prop. When
ahypothesis is awitness of the relationbetween terms, it is possible todetermine
from these terms the various constructors that may have been used to build the
witness. The inversion tactic uses this property to add hypotheses to the con‑
text, but when using an SMT solver, it can be interesting to keep the inversion
principle as an additional hypothesis. The associated transformation in scope
does this job.

We consider the inductive relation representing the graph of the addition func‑
tion between two natural numbers:

Inductive add : nat nat nat Prop =
| addO : forall (n : nat), add O n n
| addS : forall (n m k : nat), add n m k add (S n) m (S k).

A call to this transformation tactic adds a new hypothesis to the context, having
the following type:

forall (n m k : nat), add n m k
(exists (n' : nat), n = O m = n' k = n')
(exists (n' m' k' : nat),
add n' m' k' n = S n' m = m' k = S k')

7 Conclusion and perspectives 64

Pattern matching elimination Pattern matching, available in a high‑level lan‑
guage, is an unknown construct in an SMT solver. When a hypothesis contains
pattern matching, this transformation splits it into as many new hypotheses as
the number of cases.

Consider accessing the 𝑛‑th element of a list. This function can be written in a
total way, either by using an optional return value to take into account the case
where𝑛 is greater than the size of the list, or by using a default return value. A hy‑
pothesis giving the definition of the latter (nth_default) from the former (nth):

forall (A : Type) (d : A) (l : list A) (n : nat),
nth_default A d l n =
match nth l n with
| Some x x
| None d
end

is replacedwith twohypotheses, eachone focusingonacaseof thepatternmatch‑
ing:

H1 : forall A d l n, nth l n = Some x nth_default d l n = x
H2 : forall A d l n, nth l n = None nth_default d l n = d

Monomorphisation Most automated theorem provers do not handle polymor‑
phism. However, many lemmas in COQ are polymorphic. It is therefore useful to
implement a transformation that instantiates polymorphic hypotheses with the
types present in the goal, so that the solver can exploit them. The instantiation
of lemmas is performed by a heuristic that selects various types appearing in the
goal as potentially interesting instances.

In the following proof context, by instantiating H with option Z and list unit,
the proof becomes trivial for an SMT solver.

H : forall (A B : Type) (x1 x2 : A) (y1 y2 : B),
(x1, y1) = (x2, y2) x1 = x2 y1 = y2

Z.of_nat n + Z.of_nat n Z.of_nat n

7.2 Success of the plugin

Given the lack of existing tools with the purpose of canonising statements as a
bridge between the expressiveness of COQ and the various decision procedures,
the presence of TRAKT improves the level of automation of several tactics avail‑
able to COQ users. The use of TRAKT does not show any notable regression com‑
pared with zify, its main point of comparison, with regard to the specification
identified in § 5.1. Notations linked to ad hoc polymorphism such as those of
MATHCOMP presented in Example 5.2.3 are supported by TRAKT, offering a compa‑
rable feature. Finally, thededicatedpreprocessing for logic in TRAKT improves the
situation for the SMTCOQ plugin, which was the original aimwhile designing this
tool. This section uses a few example goals to demonstrate the effective features
of TRAKT, and then showshow theplugin canbeused efficientlywith SMTCOQ.

7 Conclusion and perspectives 65

7.2.1 Examples of goals handled

In the previous chapter, examples were chosen to illustrate precise aspects of
how TRAKT works. Here, let us take a concrete example and detail the entire pre‑
processing phase from the user’s point of view.

The first example goal is the following:

forall (x : int), x * x 0

By displaying MATHCOMP generic projections, the full goal is the following:

forall (x : int),
@Order.ge int_porderType
(@GRing.mul int_Ring x x) (@GRing.zero int_Ring) = true

First of all, we need to determine the canonical type of integers for the automa‑
tion tactic under consideration, as well as the ideal logical type for this tactic to
work best. In this particular case, we can use the lia tactic and target the type Z
for integers and Prop for logic, for example.

An embedding must therefore be declared between int and Z. Next, the opera‑
tions used in the goalmust also bedeclared. Here, the operation ismultiplication
mulz, whose counterpart in Z is Z.mul. Non‑negative constants of type int, in
particular zero, are represented as embeddings from nat to int via the function
Posz. Ifwedeclareanembedding from nat to Z, then it suffices to showthat Posz
can be embedded into identity in Z so that all constant values of type int can be
embedded into Z with TRAKT. The order relation over int must also be declared
embeddable into Z.ge. Finally, the generic projections of MATHCOMPmust be de‑
clared as conversion keys. Here is the equivalent using the TRAKT commands:

Trakt Add Embedding int Z Z_of_int Z_to_int π1 π2.
Trakt Add Symbol mulz Z.mul π3.
Trakt Add Embedding nat Z Z.of_nat Z.to_nat π4 π5.
Trakt Add Symbol Posz (@id Z) π6.
Trakt Add Relation (@Order.ge int_porderType) Z.ge π7.
Trakt Add Conversion GRing.mul.
Trakt Add Conversion GRing.zero.
Trakt Add Conversion Order.ge.

The proofs used have the following types:

π1 : forall (x : int), Z_to_int (Z_of_int x) = x
π2 : forall (x' : Z), Z_of_int (Z_to_int x') = x'
π3 : forall (x y : int), Z_of_int (x * y) = Z_of_int x * Z_of_int y
π4 : forall (n : nat), Z.to_nat (Z.of_nat n) = n
π5 : forall (n' : Z), n' 0 Z.of_nat (Z.to_nat n') = n'
π6 : forall (n : nat), Z_of_int (Posz n) = Z.of_nat n
π7 : forall (x y : int), x y Z_of_int x Z_of_int y

We can then call trakt Z Prop and get the following goal, provable by the lia
tactic, as opposed to the initial goal without preprocessing:

forall (x' : Z), x' * x' 0

Let usnowshowhow twoother goalsweencounteredearlier canbeprovedusing
preprocessing by TRAKT.

7 Conclusion and perspectives 66

EXAMPLE 7.2.1
We take the goal of Example 5.2.4:

forall (f : int int) (x : int), f (2 * x) ? f (x + x)

Subject to declarations similar to the previous example, preprocessing to‑
wards Z and boolean logic with trakt Z bool yields the following goal, prov‑
able by a tactic delegating proofs to an SMT solver:

forall (f' : Z Z) (x' : Z), f' (2 * x') ? f' (x' + x') = true

EXAMPLE 7.2.2
Now, we take the goal of Example 6.2.1, replacing int with nat :

forall (x y : nat), x * y + x = x * (y + 1)

Preprocessing with trakt Z Prop gives the following goal, provable by lia :

forall (x' : Z), x' 0 forall (y' : Z), y' 0
x' * y' + x' = x' * (y' + 1)

It can be seen from these examples that combining TRAKT with existing automa‑
tion tactics effectively extends their input domain bymaking more signatures in‑
telligible.

7.2.2 Integration of TRAKTwith other tools

TRAKT can be used as a one‑off preprocessing tool before using an automated
theorem prover, but it can also be used with several other preprocessing tools.
For example, TRAKT has been integrated into the scope suite of transformations
presented in § 7.1.2, thenused in associationwith SMTCOQ, giving the SNıPERplu‑
gin [12]. The role of TRAKT in this context is to canonise arithmetic and to ensure [12]: BLOT et al. (2023), “Compositional pre‑

processing for automated reasoning in de‑
pendent type theory”

that logic is expressed in bool as much as possible, in order to exploit decidabil‑
ity of the predicates present in the goal. Here we look at an example of a highly
automated formalisation using SNıPER.

EXAMPLE 7.2.3
This example deals with a formalisation of properties of several variants of 𝜆‑
calculus, such as strong normalisation, based on the MATHCOMP library. This
formalisation3 3: We owe this example to Kazuhiko SAK‑

AGUCHı.
includes deep embeddings of languages with binders, in which

DE BRUıJN indices are used to represent bound variables. The price to pay is
the need to prove technical and uninteresting properties about variable sub‑
stitution and shifting. Goals in such a context often contain both arithmetic
and logical reasoning, and proofs require inductive reasoning. For instance,
untyped 𝜆‑calculus is defined as:

Inductive term : Type =
| var of nat
| app of term * term
| abs of term.

with the following shift

Term shift d c t is term t in which vari‑
ables with an index above threshold c have
been shifted by d positions.

and substitution

Term subst n ts t is term t in which vari‑
ables with an index above threshold n have
been replaced with terms contained in list
ts.

functions:

Fixpoint shift d c t : term =
match t with
| var n var (if c n then n + d else n)

7 Conclusion and perspectives 67

| app t1 t2 app (shift d c t1) (shift d c t2)
| abs t1 abs (shift d c.+1 t1)
end.

Notation substv ts m n =
(shift n 0 (nth (var (m - n - size ts)) ts (m - n))).

Fixpoint subst n ts t : term =
match t with
| var m if n m then substv ts m n else m
| app t1 t2 app (subst n ts t1) (subst n ts t2)
| abs t' abs (subst n.+1 ts t')
end.

Note that these definitions use addition, subtraction, and comparison on the
natural numbers defined inMATHCOMP. By adding them to theTRAKTdatabase,
then performing an induction on the terms of the calculus followed by a call
to snipe , the main tactic of the SNıPER project, we can automatically prove a
number of properties on this 𝜆‑calculus.

Lemma shift_add d d' c c' t :
c ? c' c' ? c + d
shift d' c' (shift d c t) = shift (d' + d) c t.

Proof. revert d d' c c'; induction t; snipe. Qed.

Lemma shift_shift_distr d c d' c' t :
c' ? c
shift d' c' (shift d c t) = shift d (d' + c) (shift d' c' t).

Proof. revert d d' c c'; induction t; snipe. Qed.

7.3 Paths of improvement

Although TRAKT finds a use in the ecosystem of preprocessing tools for COQ, the
tool remains limited in some aspects. This section outlines these limitations to
justify further work.

7.3.1 Polymorphismanddependent types

Despite various efforts tomake the translationmore general, as the starting point
for this thesis, TRAKTwasdesignedwith zify asa template. As such, theplugin in‑
herits the various ad hoc aspects of the latter, being intended to preprocess arith‑
metic provable by lia. In particular, embeddings follow the type class model of
zify. TRAKT certainly brings a level of flexibility to it due to the fact that the stor‑
age of terms is external — at the meta level — unlike type class instances that
must strictly conform to a COQ type, but by design, the class of terms that can be
declared is close to that of zify.

In fact, the type embeddings defined in § 6.1.1 concern simple types expressed
in a single term, which can be limiting in the case where we wish to declare poly‑
morphic embeddings or embeddings based on dependent types. We can cite the
example of ordinal numbers, bounded natural numbers that are always partially
embeddable into nat or a larger integer type suchas Z, the embedding condition
being respecting the upper bound of the source ordinal.

7 Conclusion and perspectives 68

Another interesting example is canonisation when using container types on inte‑
gers. The following goal:

forall (l : list int), sumint l 0

could be rewritten in Z for what concerns arithmetic, without affecting the rest.
Indeed, if sumint is defined as fold_left (+) 0 l, then we can rewrite the addi‑
tion and the zero as those of Z to obtain the target sum. However, this kind of
embedding using polymorphic types is not allowed by TRAKT.

A second problem is the impossibility of not processing a value. In fact, in goals
involving dependent types that we wish to leave unchanged in the output goal,
some values canbeused as argumentswhose typemust not changeduring trans‑
lation, even though it is an embeddable type. One example is bitvectors whose
integer size must remain within the type initially used to encode it, because em‑
bedding this value into another type introduces the risk of getting an ill‑typed
output goal. TRAKT does not handle these special cases and always performs the
embedding when it is possible.

7.3.2 Architecture of the preprocessing phase

The structure of the preprocessing algorithmalso limits the possibilities of TRAKT.
Indeed, the tool was designed in an incremental way. Initially built on the princi‑
ple of composingmorphismproofs to preprocess subtermsbelonging to a theory
whose signature can be embedded, the various additional features were grafted
onto the algorithm’smain recursive function, adding arguments to represent var‑
ious pieces of information to be held in memory in the recursive calls. This ap‑
proach has the advantage of being pragmatic and quickly providing a functional
tool that can be used in a real context, but it also has a few drawbacks.

Firstly, leaving aside congruence theory, that can always be processed on the fly,
TRAKT only allows one theory to be preprocessed at a time. If the goal contains a
mix of theories, TRAKT has to be called several times with preprocessing for one
theory each time.

Secondly, going from bool to Prop is done in two phases. In order to rewrite a
boolean subterm in Prop, the subterm b must be cast in Prop with an equality:
b = true, false = b, etc. If the subterm is under an uninterpreted predicate of
type bool Prop, then it will not be possible to express it in Prop in the output
goal. In the current state of TRAKT, this information is not tracked during trans‑
lation. When translating a boolean value, it is therefore not possible to know
whether it canbe replacedwith its counterpart in Prop. Even if thebooleanequal‑
ity Nat.eqb over natural numbers can be rewritten into the equality in Prop over
type Z, at the node of the relation, it will not be possible to know if the embed‑
ding can be carried out. So, to translate from bool to Prop, a specialised logical
phase is run first, with the ability to look over a term to see if it is cast into Prop
in a way that allows rewriting. Once the first pass has been made, the goal is ex‑
pressed in Prop and the remaining embeddings are possible. We will therefore
go from Nat.eqb to @eq nat and then to @eq Z, requiring two user declarations
instead of one.

Finally, rewriting proofs take the form of an equality between a subterm before
and after rewriting. Their composition is done by transitivity, so all the equality
proofs are extended to have the same context and to be able to be composed. As
a result, the context is repeatedwith a slight variationat each rewrite,which gives

7 Conclusion and perspectives 69

the global proof on a subtermaquadratic complexity in space as a function of the
number of rewrites to be performed in this subterm.

All in all, the flaws identified in this section can be corrected with ad hoc meta‑
programming solutions, which allows keeping the current prototype. Alterna‑
tively, drawing on the lessons learnt from the design of TRAKT, we can also take
up theproblemof proof transfer, presented in § 3.3, anddesign anewpreprocess‑
ing toolwithamoregeneral approach, encompassing cases lyingat theboundary
of what TRAKT can handle. This is the solution chosen for the second prototype
developed during this thesis, presented in the following part.

TROCQ:
PROOF TRANSFER
BY PARAMETRICITY

Introduction

The limitations identified while reviewing TRAKT show a need for generalisation
compared to the ad hoc approach inherited from zify. Rather than starting from
concrete relations between terms4 and building around them an algorithm that 4: In TRAKT, these are, for example, bijec‑

tions or partial embeddings defined in § 6.1.1
to relate types, orproofsofmorphismwith re‑
spect to the embedding function defined in
§ 6.1.3 to link operations.

exploits the embedding functions to create the associated goal, we can abstract
these relations, first build the algorithm that exploits them, and then give them
content. We then say that two types 𝐴 and 𝐵 are related if there is a relation 𝑅
of type 𝐴 → 𝐵 → □ . Next, we study the possibility to propagate these relations
by induction on typing.

This study is the subject of a line of work on the concept of parametricity or log-
ical relations [58], the aim of which was initially to derive properties on terms [58]: MıTCHELL (1986), “Representation Inde‑

pendence and Data Abstraction”from their types in polymorphic 𝜆‑calculi. By giving types a relational interpre‑
tation, we can obtain so‑called “free” theorems. If two terms 𝑎 and 𝑏 are re‑
lated, then we can find a relation between two terms 𝐶[𝑎] and 𝐶′[𝑏], where 𝐶
is a context and 𝐶′ is the associated context. This means, for example, that a
relation between two types 𝐴 and 𝐵 can be extended to lists of values in 𝐴
and 𝐵, which inpractice corresponds tooperations like List.for_all2 inOCAML.
The extension of parametricity to dependent types and then to the type theory of
COQmakes it possible to internalise parametricitywitnesses, i.e., proofs that two
terms are linked by a relation. In such a context, free theorems actually become
COQ proofs, rather thanmeta‑level properties as before.

The implementation of a parametricity translation [59] is a function that takes a [59]: BOULıER et al. (2017), “The next 700 syn‑
tactical models of type theory”term to be translated— in our case, the goal— and produces two output terms, a

translated term — the associated goal — and a witness proving that the original
term is related to the translated term. In the empty context and on closed terms,
the parametricity translation in COQ is nothing other than a deep identity on the
goal, obtained by traversing it by induction on the syntax. To translate constants,
we add relations between each source constant 𝑐 and an associated target con‑
stant 𝑐′. So, to translate addition in nat to addition in bin_nat, we provide a
relation 𝑅 between both types as well as a relation between both additions, i.e.,
a proof that the addition of terms related by 𝑅 yields terms related by 𝑅. Any
goal containing values and additions in nat can then be translated to an associ‑
ated goal mentioning these terms in bin_nat.

In order to carry out a proof transfer, we need to be able to extract a function
from the parametricity witness. We then wish to enrich the relation propagated
through the syntax during the parametricity translation, in order to take advan‑
tage of the general framework that this technique provides while obtainingmore
information in the parametricity witness obtained at the end of the translation.
Ofall thepossibleenrichments, asymmetrical enrichmentscannotbepropagated
through all constructs, for reasons of polarity, particularly for the Π‑type. Stable
enrichment is possible through so‑called univalent parametricity [14], at the cost [14]: TABAREAU et al. (2021), “Themarriage of

univalence and parametricity”of adding the univalence principle to COQ, which is necessary to translate uni‑
verses. The witness obtained is then dense and rich in information, and contains
in particular the function necessary for proof transfer.

It is therefore possible to carry out proof transfer using a parametricity transla‑
tion. Such a translation supports all language constructs and allows many goals
to be preprocessed. However, in this context, relations on constants added to the
context by the user before translation require a univalentwitness that, due to the

72

richness of this witness, is not always easily provable. Furthermore, the principle
of univalence comes in the standard version of COQ in the formof an axiom that is
regrettable to use as part of the preprocessing of a goal that could be done with‑
out an axiom if the user did it by hand, by making manipulations similar to what
is done automatically by TRAKT. This limitation is the major motivation for the
development of TROCQ [15], an implementation of a new,more flexible andmod‑ [15]: COHEN et al. (2024), “Trocq: Proof Trans‑

fer for Free, With or Without Univalence”ular parametricity framework, in order to retain the generality of parametricity
while making parsimonious use of axioms, ideally reduced to cases where they
are strictly necessary to process the input term.

This sectionpresents the theoretical concepts of TROCQ. First, wepresent inmore
details the context of this new plugin,5 i.e., the path from the origins of para‑ 5: The implementation is available in the

repository:

https://github.com/coq-community/trocq

metricity to univalent parametricity, that forms the basis of the work done on
TROCQ, in the same way as zify for TRAKT (§ 8). Secondly, we study the decom‑
positionof theunivalent parametericitywitness to expose its information, aswell
as its recomposition into a hierarchy of parametricitywitnesses and the construc‑
tion of a single framework that makes all these witnesses work together (§ 9). Fi‑
nally, we formulate this relation as a logical program, in order to expose asmuch
of the required context information as possible, with the aim of implementing it
as a translation in a tactic later on (§ 10).

https://github.com/coq-community/trocq

Parametricity
in dependent type theory 8

8.1 Motivation and definition . . 73
8.1.1 Typing and properties of

𝜆𝜆𝜆‑terms 73
8.1.2 Raw parametricity translation 74
8.1.3 Limitations of the raw transla‑

tion 75
8.2 Univalent parametricity . . . 75
8.2.1 Enrichment of parametricity

witnesses 76
8.2.2 Type equivalence and univa‑

lence 77
8.2.3 Univalent parametricity transla‑

tion 79
8.2.4 Omnipresence of the univa‑

lence axiom 81

The limitations of TRAKT lead us to look for a more general approach to proof
transfer in COQ. This chapter presents parametricity, a concept from the theory
of programming languages that gives the types of the 𝜆‑calculus a relational in‑
terpretation, allowing the redesign of the links between input and output terms
in the context of a preprocessing tool. Here, we define the original concept and
its extension to the 𝜆‑calculus of COQ (§ 8.1). Then, we present univalent para-
metricity, an enriched version allowing generalised proof transfer in COQ thanks
to the univalence axiom, andwe showwhy this technique is interesting regarding
the specification we gave for TRAKT initially (§ 8.2).

8.1 Motivation anddefinition

The notion of parametricity dates back to the appearance of polymorphism in 𝜆‑
calculus. Originally a tool for reasoningabout thepropertiesofpolymorphic func‑
tions [13], it is now used to perform translations of terms. This section presents [13]: REYNOLDſ (1983), “Types, Abstraction

and Parametric Polymorphism”these two aspects.

8.1.1 Typing andproperties of𝜆𝜆𝜆-terms

In the simply typed 𝜆‑calculus, terms can have simple functional types or “arrow
types”, governed by the following typing rule LAM→:

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥. 𝑡 ∶ 𝐴 → 𝐵

All functions of this calculus are monomorphic and have a concrete domain 𝐴
and codomain 𝐵. Thus, by defining a type 𝔹 and primitive operations ¬ and ∧
to represent booleans and logical connectives of negation and conjunction, the
function representing the NAND logical gate has a unique type:

Γ ⊢ 𝜆𝑏1 𝑏2. ¬ (𝑏1 ∧ 𝑏2) ∶ 𝔹 → 𝔹 → 𝔹

However, in a 𝜆‑calculus à la CURRY,1 there are functions with several possible 1: This is thepresentation inwhich functions
have no typing annotations.types. A primitive example is the identity function, 𝜆𝑥. 𝑥. Since it can be law‑

fully applied to any term in the language, this function has an infinite number of
types, each one depending on the type chosen for the bound variable: the func‑
tion is said to be polymorphic. When this type can be abstracted and represented
by a variable, we refer to parametric polymorphism. System F allows represent‑
ing these variables using an additional binder, Λ. In this way, identity can be
uniquely typed:

Γ ⊢ 𝜆𝑥. 𝑥 ∶ Λ𝛼. 𝛼 → 𝛼

Themain observation of parametricity is that the body of a polymorphic function
neverexploits the typeof theboundvariable, i.e., the typeparameter. Thismakes
it possible to extract properties about the behaviour of polymorphic functions
from their type, i.e., without needing to inspect the body of the function. For

8 Parametricity in dependent type theory 74

instance, the polymorphic type of the identity function can be used to uniquely
determine its implementation. Indeed, the function receives as input a value of
a type whose structure it cannot exploit, because it is polymorphic, and must re‑
turn a value of the same type. As a result, there is no possible implementation
other than the one that returns the input value unchanged. These properties,
available directly at the type level, are referred to as “free theorems” in the liter‑
ature [60]. [60]: WADLER (1989), “Theorems for Free!”

8.1.2 Rawparametricity translation

Type theory allows representing parametricity properties and their proofs inter-
nally, i.e., in the same calculus as the one which the terms being studied live in.
In this way, results previously obtained by manual analysis at the meta level can
in this context be given automatically by a syntactic translation from the calculus
to itself. Such translations can take into account dependent types [61], inductive [61]: BERNARDY et al. (2011), “Realizability

and Parametricity in Pure Type Systems”types [62], as well as the full Calculus of Inductive Constructions,2 including its

[62]: BERNARDY et al. (2012), “Proofs for free ‑
Parametricity for dependent types”

2: It is the Calculus of Constructions, defined
in § 2.1.3, equipped with inductive types de‑
fined in § 2.2.2.

impredicative sort [63].

[63]: KELLER et al. (2012), “Parametricity in an
Impredicative Sort”

Theworkof BERNARDY et al., KELLER, and LAſſONmakes it possible to definewhat
will from now be referred to as the raw parameticity translation, that essentially
defines a logical relation J 𝑇 K for any type 𝑇 , by induction on the syntax:

J ⟨⟩ K ∶= ⟨⟩J Γ, 𝑥 ∶ 𝐴 K ∶= J Γ K, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴′, 𝑥𝑅 ∶ J 𝐴 K 𝑥 𝑥′

J□𝑖 K ∶= 𝜆𝐴 𝐴′. 𝐴 → 𝐴′ → □𝑖J 𝑥 K ∶= 𝑥𝑅J Π𝑥 ∶ 𝐴. 𝐵 K ∶= 𝜆𝑓 𝑓 ′. Π(𝑥 ∶ 𝐴)(𝑥′ ∶ 𝐴′)(𝑥𝑅 ∶ J 𝐴 K 𝑥 𝑥′). J 𝐵 K (𝑓 𝑥) (𝑓 ′ 𝑥′)J 𝜆𝑥 ∶ 𝐴. 𝑡 K ∶= 𝜆(𝑥 ∶ 𝐴)(𝑥′ ∶ 𝐴′)(𝑥𝑅 ∶ J 𝐴 K 𝑥 𝑥′). J 𝑡 KJ 𝑡 𝑢 K ∶= J 𝑡 K 𝑢 𝑢′ J 𝑢 K
Figure 8.1: Raw parametricity translation for
𝐶𝐶𝜔.

This presentation uses the standard convention that 𝑡′ is the termobtained from
a term 𝑡 by replacing every variable 𝑥 in 𝑡 with a fresh variable 𝑥′. A variable
𝑥 is translated into a variable 𝑥𝑅 with a fresh name. This translation preserves
typing in the following sense:

THEOREM 8.1.1 (Abstraction theorem)
If Γ ⊢ 𝑡 ∶ 𝑇 , then J Γ K ⊢ 𝑡 ∶ 𝑇 , J Γ K ⊢ 𝑡′ ∶ 𝑇 ′, and J Γ K ⊢ J 𝑡 K ∶ J 𝑇 K 𝑡 𝑡′.

Proof. See for example [63]. ■

This translation generates precisely the statements expected for a family of types
or a parametric program. For instance, the translation of a dependent product
givenabove is a relation that links two functions 𝑓 and 𝑓 ′ if theyproduce related
terms when given related terms as input.

8 Parametricity in dependent type theory 75

8.1.3 Limitations of the raw translation

Inour context, rawparametricityhas twomain limitations, namely, the factdefini‑
tional equalities are not preserved and the weakness of parametricity witnesses.

In the first case, TABAREAU et al. take the example of a proof of false3 from a con‑ 3: That is, an empty inductive type called
False.tradictory equality over natural numbers:

forall (n : nat), O = S n False

We can prove this property by defining a type constructor P : nat Type that
is O = O in O and False otherwise. Next, we introduce n and the equality e,
and we must prove False. The proof is then obtained by dependent induction
on e: if we can prove a property Q O refl , then we have Q (S n) e. By posing
Q n _ = P n, wemust then prove P O to obtain a proof of P (S n). Since P O is
defined as O = O, it is sufficient to provide refl for this proof, thenwe obtain the
proof of P (S n), i.e., False. However, in this last step, we exploit the fact that
the value P is defined using the induction principle on nat, itself defined using
patternmatching on the value of type nat supplied to it. So, as soon as the head
constructorof theargumentof P is known,wecancarryout a 𝜄‑reduction step4 to 4: This is the reduction rule dealing with pat‑

tern matching.select the right branch of the patternmatching. This conversion step is necessary
to conclude that the final term is well typed. We say that P O and P (S n) are
definitionally equal to — respectively — O = O and False.

If we use raw parametricity to translate the final proof term, we will associate
each constant on nat with a constant on a type associatedwith nat, for example
bin_nat. In particular, the induction principle of nat will become an induction
principle on bin_nat whose type structure is the same, i.e., induction takesplace
from successor to successor as on type nat, whereas the constructors of bin_nat
encode binary values. Consequently, the induction principle that we associate
with nat_rect is not, unlike the latter, defined by directly patternmatching on its
argument. Thus, the translated proof termwill not be able to exploit 𝜄‑reduction
in typechecking. Indeed, COQwill have to show that refl has type P' bO, which
is impossiblewithout the information that the latter term is actually bO = bO. The
use of conversion in typing is powerful, but penalises all translations that do not
preserve definitional equalities, as is the case with raw parametricity.

The second limitation of this translation is the weakness of the parametricity wit‑
nesses. This is because, although the raw translation is able to generate the de‑
sired goal after preprocessing,5 in this context, the parametricity witnesses relat‑ 5: Provided that the parametricity context

contains the various relations describing the
substitutions desired by the user.

ing the input and output terms are always relations or relation witnesses. Gener‑
ating the associated goal is part of the work required for proof transfer, but just
knowing that both goals are related is not enough to replace the first with the sec‑
ond. This is because rewriting the goal requires a function from one to the other,
which is not provided by the raw parametricity translation.

8.2 Univalent parametricity

To overcome the limitations of raw parametricity, one solution is to enrich para‑
metricity witnesses so that it is still possible to get an implication between the
output goal and the input goal after translation. This is the promise of univalent
parametricity [14], a more powerful parametricity translation based on exploit‑ [14]: TABAREAU et al. (2021), “Themarriage of

univalence and parametricity”ing the univalence axiom [64] and user declarations of equivalences between

[64]: Univalent Foundations Program (2013),
Homotopy Type Theory: Univalent Founda-
tions of Mathematics

8 Parametricity in dependent type theory 76

types. In this section, we give details about the progressive enrichment of the
parametricity witness type, we make explicit the definition of equivalence used
in this context, then we introduce the univalent parametricity translation.

8.2.1 Enrichment of parametricitywitnesses

To define a parametricity translation, we first define the translation of the uni‑
verse, as this gives the structure of all parametricity witnesses relating types. We
thendefine the rest of the cases in the translation that extendproofs on subterms
to new constructions. For example, in the raw parametricity translation, the wit‑
ness relating two types 𝐴 and 𝐵 is a relation 𝐴 → 𝐵 → □, and the translation
of the dependent product corresponds to a proof of the following property, that
states that fromwitnesses on 𝐴 and 𝐴′ and 𝐵 and 𝐵′, we can build a witness
on dependent products Π𝑎 ∶ 𝐴. 𝐵 𝑎 and Π𝑎′ ∶ 𝐴′. 𝐵′ 𝑎′ :

Π(𝐴 𝐴′ ∶ □)(𝐴𝑅 ∶ 𝐴 → 𝐴′ → □).
Π(𝐵 ∶ 𝐴 → □)(𝐵′ ∶ 𝐴′ → □).

(Π(𝑎 ∶ 𝐴)(𝑎′ ∶ 𝐴′). 𝐴𝑅 𝑎 𝑎′ → (𝐵 𝑎 → 𝐵′ 𝑎′ → □)) →
(Π𝑎 ∶ 𝐴. 𝐵 𝑎) → (Π𝑎′ ∶ 𝐴′. 𝐵′ 𝑎′) → □

If we change thedefinitionof thewitness onuniverses to enrich theparametricity
translation, the other cases in the translation have more information about the
subterms, but they alsohave topropagatemore information. Thus, ifwe redefine
the parametricity witness over universes as a pair (𝐴 → 𝐵 → □) × (𝐵 → 𝐴)
containing a function, theproperty tobeproved for an arrow type6 thenbecomes 6: We first study the arrow type, then the

dependent product, to expose two different
problems appearing with the enrichment of
the witness by a function.

the following:

Π(𝐴 𝐴′ ∶ □)(𝐴𝑅 ∶ (𝐴 → 𝐴′ → □) × (𝐴′ → 𝐴)).
Π(𝐵 𝐵′ ∶ □)(𝐵𝑅 ∶ (𝐵 → 𝐵′ → □) × (𝐵′ → 𝐵)).

((𝐴 → 𝐵) → (𝐴′ → 𝐵′) → □) × ((𝐴′ → 𝐵′) → (𝐴 → 𝐵))

The left part of the pair to build on the arrow type — the relation — can be ob‑
tained in the same way as for the raw translation. The right‑hand side, however,
amounts to building a value in 𝐴 → 𝐵 from the following three values:

𝑓 ′ ∶ 𝐴′ → 𝐵′ 𝜓𝐴 ∶ 𝐴′ → 𝐴 𝜓𝐵 ∶ 𝐵′ → 𝐵

Yet, we can see that the contravariance of the domain of the arrow type prevents
us from carrying out this proof. In fact, this proof would be feasible if the 𝜓𝐴
function were in the other direction, i.e., a function 𝜙𝐴 of type 𝐴 → 𝐴′. We
would build the expected function by taking a value in 𝐴, then applying in turn
𝜙𝐴, 𝑓 ′, then 𝜓𝐵, to obtain a value in 𝐵. Breaking the symmetry by only introduc‑
ing a function in one direction requires us to orient the parametricity witnesses
and have a translation that handles two types of witness.

This situation is acceptable, although it complicates the parametricity transla‑
tion. However, enrichment by a function poses another problem linked to de‑
pendent types.7 The example above deals with the arrow type, but the proof for 7: This problem would also exist when mak‑

ing the witness symmetrical by enriching the
raw witness with a function in both direc‑
tions.

8 Parametricity in dependent type theory 77

a dependent product is as follows:

Π(𝐴 𝐴′ ∶ □)(𝐴𝑅 ∶ (𝐴 → 𝐴′ → □) × (𝐴′ → 𝐴)).
Π(𝐵 ∶ 𝐴 → □)(𝐵′ ∶ 𝐴′ → □).

(Π(𝑎 ∶ 𝐴)(𝑎′ ∶ 𝐴′). 𝐴𝑅.1 𝑎 𝑎′ → ((𝐵 𝑎 → 𝐵′ 𝑎′ → □) × (𝐵′ 𝑎′ → 𝐵 𝑎)))
→ ((Π𝑎 ∶ 𝐴. 𝐵 𝑎) → (Π𝑎′ ∶ 𝐴′. 𝐵′ 𝑎′) → □)

× ((Π𝑎′ ∶ 𝐴′. 𝐵′ 𝑎′) → (Π𝑎 ∶ 𝐴. 𝐵 𝑎))

Again, we focus on the right‑hand side, where we need to build a value in the
dependent type Π𝑎 ∶ 𝐴. 𝐵 𝑎 from the following three values:

𝑓 ′ ∶ Π𝑎′ ∶ 𝐴′. 𝐵′ 𝑎′

𝜓𝐴 ∶ 𝐴′ → 𝐴
𝜓𝐵 ∶ Π(𝑎 ∶ 𝐴)(𝑎′ ∶ 𝐴′). 𝐴𝑅.1 𝑎 𝑎′ → (𝐵′ 𝑎′ → 𝐵 𝑎)

The contravariance certainly gives the wrong type for 𝜓𝐴, but here we are inter‑
ested in the type of 𝜓𝐵, that in the case of a dependent product, becomes depen‑
dent on two values 𝑎 and 𝑎′ as well as a parametricity witness between them.
We need to build a value of type Π𝑎 ∶ 𝐴. 𝐵 𝑎, i.e., a value of type 𝐵 𝑎 when in‑
troducing a value 𝑎 ∶ 𝐴 into the context. However, even if we had a value of type
𝐴′ to supply as the secondargument to 𝜓𝐵, wewouldnot be able tobuild apara‑
metricity witness relating 𝑎 and this value, since 𝑎 is only a local variable about
which we have no other information. We therefore need to enrich the parame‑
tericity witness type further, for example by linking the relation and the function.
The witness — or rather one of the oriented witnesses — becomes a dependent
pair with three values:

Σ(𝑅 ∶ 𝐴 → 𝐵 → □)(𝜙 ∶ 𝐴 → 𝐵). Π(𝑎 ∶ 𝐴). 𝑅 𝑎 (𝜙 𝑎)

This newwitness thenprovides ameans of constructing themissingwitness to in‑
stantiate 𝜓𝐵 above and creating the function on the dependent products. How‑
ever, as the parametricity witness has been enriched, we also need to prove the
last property on the dependent product, which also requires more information.
The univalent parametricity witness can be seen as the culmination of an iter‑
ation on this problem. We obtain a witness that is both symmetrical and stable
through translation, i.e., that passes throughall the constructionswithout chang‑
ing its nature.

8.2.2 Type equivalence andunivalence

At the heart of univalent parametricity lies the principle of univalence, defined us‑
ing type equivalence, a widespread notion with many existing definitions. Here,
we explain the definitions chosen by TABAREAU et al., that form a basis for our
work: isomorphism, equivalence, univalence. These are classic definitions that
can be found in the Homotopy Type Theory book [64]. [64]: Univalent Foundations Program (2013),

Homotopy Type Theory: Univalent Founda-
tions of Mathematics

DEFıNıTıON 8.2.1 (Isomorphism)
A function 𝜙 ∶ 𝐴 → 𝐵 is an isomorphism, denoted IsIso(𝜙), if there exists
another function 𝜓 that is both a left‑inverse and a right‑inverse for 𝜙 :

IsIso(𝜙) ∶= Σ(𝜓 ∶ 𝐵 → 𝐴). (𝜓 ∘ 𝜙 ≑ id) × (𝜙 ∘ 𝜓 ≑ id)

8 Parametricity in dependent type theory 78

Note that type embeddings in TRAKT, introduced in § 6.1.1, are defined using an
isomorphism in the case of total embeddings.

DEFıNıTıON 8.2.2 (Equivalence)
The addition of an adjunction property to an isomorphism 𝜙 ∶ 𝐴 → 𝐵 gives
an equivalence, denoted IsEquiv(𝜙) :

IsEquiv(𝜙) ∶= Σ(𝜓 ∶ 𝐵 → 𝐴)
(sec ∶ 𝜓 ∘ 𝜙 ≑ id)
(ret ∶ 𝜙 ∘ 𝜓 ≑ id).
ap 𝜙 ∘ sec ≑ ret ∘ 𝜙

where ap 𝑓 𝑝 ∶ 𝑓 𝑥 = 𝑓 𝑦 for 𝑝 ∶ 𝑥 = 𝑦.

Theadjunctionproperty ties together theproofsofsectionand retractionbyshow‑
ing that a proof of 𝜙 ∘ 𝜓 ∘ 𝜙 ≑ 𝜙 can be obtained by removing in the left‑hand
member either the outer composition 𝜙 ∘ 𝜓 using the retraction property, or the
inner composition 𝜓 ∘ 𝜙 using the section property.

Sometimes, it is possible to define the inverse function as well as the section and
retraction proofs, yet adjunction is hard to prove. In this case, there is a classic
method in HoTT to obtain an equivalence from an isomorphism.

LEMMA 8.2.3
An isomorphism is an equivalence.

DEFıNıTıON 8.2.4 (Type equivalence)
We say that two types 𝐴 and 𝐵 are equivalent, denoted 𝐴 ≃ 𝐵, when there
exists an equivalence 𝜙 ∶ 𝐴 → 𝐵 :

𝐴 ≃ 𝐵 ∶= Σ𝜙 ∶ 𝐴 → 𝐵. IsEquiv(𝜙)

A type equivalence 𝑒 ∶ 𝐴 ≃ 𝐵 thus includes two transport functions, thatwe can
also denote ↑𝑒 ∶ 𝐴 → 𝐵 and ↓𝑒 ∶ 𝐵 → 𝐴. They can be used to perform proof
transfer from type 𝐴 to type 𝐵, using ↑𝑒 at covariant occurrences, and ↓𝑒 at
contravariant ones.8 8: This operation is similar to what happens

in TRAKT, where the role of transport func‑
tions is played by embedding functions.The univalence principle asserts that equivalent types are indistinguishable.

DEFıNıTıON 8.2.5 (Univalence principle)
For any two types 𝐴 and 𝐵, the canonical map of type 𝐴 = 𝐵 → 𝐴 ≃ 𝐵 is
an equivalence.

In variants of 𝐶𝐶𝜔, the univalence principle can be postulated as an axiom, with
no explicit computational content, as done for instance in the HOTT library [65] [65]: BAUER et al. (2017), “The HoTT library:

a formalization of homotopy type theory in
Coq”

for the COQproof assistant. Somemore recent variants of dependent type theory
feature a built‑in computational univalence principle, and are used to implement
experimental proof assistants, such as CUBıCAL AGDA. In both cases, the univa‑
lence principle is a powerful proof transfer principle from □ to □, as for any
two types 𝐴 and 𝐵 such that 𝐴 ≃ 𝐵, and any 𝑃 ∶ □ → □, we can obtain that
𝑃 𝐴 ≃ 𝑃 𝐵 as a direct corollary of univalence.9 Concretely, 𝑃 𝐵 is obtained 9: For 𝑒 ∶ 𝐴 ≃ 𝐵 and 𝑢 a proof of the uni‑

valence principle applied to 𝐴 and 𝐵, we
have:

↑𝑢 (ap𝑃 (↓𝑢 𝑒)) ∶ 𝑃 𝐴 ≃ 𝑃 𝐵.

from 𝑃 𝐴 by appropriately allocating the transport functions provided by the
equivalence proofs, a transfer process typically useful in the context of proof en‑

8 Parametricity in dependent type theory 79

gineering [66]. [66]: RıNGER et al. (2021), “Proof repair across
type equivalences”

8.2.3 Univalent parametricity translation

The key observation of univalent parametricity is that it is possible to enrich para‑
metricity witnesses while preserving the abstraction theorem (8.1.1). Indeed, a
raw parametricity witness links two types by an arbitrary relation, whereas uni‑
valent parametricity requires that the relation be an equivalence between these
types. However, this enrichment requires a careful design in the translation of
universes.

DEFıNıTıON 8.2.6
The relational interpretation of the universe in univalent parametricity is the
following:

Param𝑖 (𝐴 𝐵 ∶ □𝑖) ∶= Σ(𝑅 ∶ 𝐴 → 𝐵 → □𝑖)(𝑒 ∶ 𝐴 ≃ 𝐵).
Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 ≃ (𝑎 = ↓𝑒 𝑏)

This type packages a relation 𝑅 and an equivalence 𝑒 such that 𝑅 is equiva‑
lent to the functional relation associated with ↓𝑒. A crucial property of this new
translation is the following:

LEMMA 8.2.7
Under the univalence axiom, the interpretation of the universe in univa‑
lent parametricity is equivalent to equivalence, i.e., there exists a term
ParamEquiv𝑖 such that

ParamEquiv𝑖 ∶ Π(𝐴 𝐵 ∶ □𝑖).Param𝑖 𝐴 𝐵 ≃ (𝐴 ≃ 𝐵).

Proof. Let 𝐴 and 𝐵 be two types. We have:

Param𝑖 𝐴 𝐵
↓ definition

≡ Σ(𝑅 ∶ 𝐴 → 𝐵 → □𝑖)(𝑒 ∶ 𝐴 ≃ 𝐵). Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 ≃ (𝑎 = ↓𝑒 𝑏)
↓ swapping mutually non‑dependent binders

≃ Σ(𝑒 ∶ 𝐴 ≃ 𝐵)(𝑅 ∶ 𝐴 → 𝐵 → □𝑖). Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 ≃ (𝑎 = ↓𝑒 𝑏)
↓ univalence principle

≃ Σ(𝑒 ∶ 𝐴 ≃ 𝐵)(𝑅 ∶ 𝐴 → 𝐵 → □𝑖). Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 = (𝑎 = ↓𝑒 𝑏)
↓ equality in point‑free style

≃ Σ(𝑒 ∶ 𝐴 ≃ 𝐵)(𝑅 ∶ 𝐴 → 𝐵 → □𝑖). 𝑅 = 𝜆(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). (𝑎 = ↓𝑒 𝑏)
↓ contractible type in the right‑handmember of the dependent pair

≃ 𝐴 ≃ 𝐵

■

This observation is actually an instance of a more general technique available
for constructing syntactic models of type theory [59]. In fact, enriching the para‑ [59]: BOULıER et al. (2017), “The next 700 syn‑

tactical models of type theory”metricity witness on the universe changes the structure of all the parametricity
witnesses on types, making them dependent pairs, unlike the raw translation
where they are relations. In this state, the translation is ill‑formed and the ab‑
straction theorem becomes invalid. In these models, a standard way to recover

8 Parametricity in dependent type theory 80

the abstraction theorem then consists in refining the translation into two vari‑
ants, in order to handle correctly terms that are also types. Thus, the translation
of 𝑇 ∶ □𝑖 as a term, denoted [𝑇]𝑢, is indeed a dependent pair, that contains a
relation as well as the additional data prescribed by the interpretation of the uni‑
verse Param𝑖. The translation of 𝑇 as a type, J 𝑇 K𝑢, will be the relation itself,
i.e., the projection of the dependent pair [𝑇]𝑢 onto its first component. The full
univalent parametricity translation is therefore the following:

J ⟨⟩ K𝑢 ∶= ⟨⟩J Γ, 𝑥 ∶ 𝐴 K𝑢 ∶= J Γ K𝑢, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴′, 𝑥𝑅 ∶ J 𝐴 K𝑢 𝑥 𝑥′

J 𝐴 K𝑢 ∶= [𝐴]𝑢.1

[□𝑖]𝑢 ∶= (Param𝑖 ; Equiv□𝑖
; Coh□𝑖

)
[𝑥]𝑢 ∶= 𝑥𝑅

[Π𝑥 ∶ 𝐴. 𝐵]𝑢 ∶= ⎛⎜⎜
⎝

𝑅Π 𝐴 𝐵 ;
EquivΠ 𝐴 𝐴′ J 𝐴 K𝑢 𝐵 𝐵′ J 𝐵 K𝑢 ;
CohΠ 𝐴 𝐴′ J 𝐴 K𝑢 𝐵 𝐵′ J 𝐵 K𝑢

⎞⎟⎟
⎠

[𝜆𝑥 ∶ 𝐴. 𝑡]𝑢 ∶= 𝜆(𝑥 ∶ 𝐴)(𝑥′ ∶ 𝐴′)(𝑥𝑅 ∶ J 𝐴 K𝑢 𝑥 𝑥′). [𝑡]𝑢
[𝑓 𝑡]𝑢 ∶= [𝑓]𝑢 𝑡 𝑡′ [𝑡]𝑢

Figure 8.2: Univalent parametricity transla‑
tion for 𝐶𝐶𝜔.

Themost interesting casesare theuniverseand thedependentproduct, theother
cases being similar to the raw translation. Being types, their translation is there‑
fore a dependent triplet, the first component being a relation, the second a proof
of equivalence, and the last a proof of coherence between the two preceding
terms. The 𝑅Π relation has the same structure as in the raw translation, using
the univalent translation for the domain and the codomain:

𝑅Π 𝐴 𝐵 ∶= 𝜆𝑓 𝑓 ′. Π(𝑥 ∶ 𝐴)(𝑥′ ∶ 𝐴′)(𝑥𝑅 ∶ J 𝐴 K𝑢 𝑥 𝑥′). J 𝐵 K𝑢 (𝑓 𝑥) (𝑓 ′ 𝑥′)

Equivalence proofs— Equiv□𝑖
and EquivΠ —and coherence proofs— Coh□𝑖

and CohΠ — are available in the article [14]. [14]: TABAREAU et al. (2021), “Themarriage of
univalence and parametricity”

We can now phrase the abstraction theorem for univalent parametricity, where
⊢𝑢 refers to a typing judgment assuming the univalence axiom:

THEOREM 8.2.8 (Abstraction theorem for univalent parametricity)
If Γ ⊢ 𝑡 ∶ 𝑇 , then J Γ K𝑢 ⊢𝑢 [𝑡]𝑢 ∶ J 𝑇 K𝑢 𝑡 𝑡′.

We still note that in order to respect the abstraction theorem, the definition of
[□𝑖]𝑢 uses the univalence principle in an essential way. Indeed, since the rela‑
tion on the universe is Param𝑖, we must have:

[□𝑖]𝑢 ∶ J□𝑖+1 K𝑢 □𝑖 □𝑖
i.e. [□𝑖]𝑢 ∶ Param𝑖+1 □𝑖 □𝑖

The equivalence between a universe and itself, Equiv□𝑖
, is trivial and uses iden‑

tity as both transport functions. Thus, proving the coherence property Coh□𝑖
amounts to proving that the relation is equivalent to equality over the universe,

8 Parametricity in dependent type theory 81

i.e.:
Π𝐴 𝐵 ∶ □𝑖.Param𝑖 𝐴 𝐵 ≃ (𝐴 = 𝐵).

The proof is based on Lemma 8.2.7 and definitely requires the univalence axiom.

8.2.4 Omnipresence of the univalence axiom

Let us take the following example of goal:

Π(𝑃 ∶ ℕ → □). 𝑃 0 → 𝑃 0

If we associate ℕ with another type, for example a binary encoding 𝑁 of natural
numbers, then the goal associated by parametricity will be as follows, where 0𝑁
is the constant associated with 0 :

Π(𝑃 ′ ∶ 𝑁 → □). 𝑃 ′ 0𝑁 → 𝑃 ′ 0𝑁

The univalent parametricity witness is built by induction on the syntax of the ini‑
tial goal. During the traversal of this term, we are forced to translate □, thus in‑
voking the proof Coh□ that requires the univalence axiom. However, we are in
a case inwhich the proof of implication between the two goals is feasiblewithout
an axiom. The proof to be performed is as follows:

𝐻′ ∶ Π(𝑃 ′ ∶ 𝑁 → □). 𝑃 ′ 0𝑁 → 𝑃 ′ 0𝑁 𝑃 ∶ ℕ → □ 𝑝0 ∶ 𝑃 0
𝑃 0

The trivial proof 𝑝0 is possible here, but the general proof valid for other goals is
the one using 𝐻′, by placing embedding functions in one direction or the other
according to the types to be inhabited. We then instantiate 𝐻′ with:

𝑃 ′ ∶= 𝑃 ∘ ↓ℕ

If we define embedding functions that send the zero of one type to the zero of
the other, then the second argument of 𝐻′ can be 𝑝0 unchanged. In this way,
we have a proof of implication between the two goals without using an axiom.
This case occurs as soon as an instance of □ is present in the initial goal without
being problematic for the development of a manual proof.

Type equivalence in kit 9
9.1 A new formulation of type

equivalence 82
9.1.1 Decomposing equivalence . . 83
9.1.2 Hierarchical recomposition of

parametricity witnesses 86
9.2 Populating the hierarchy of

relations 87
9.2.1 Translation of universes 87
9.2.2 Translation of dependent

products 88
9.2.3 The case of non‑dependent

products 89

As explained in theprevious chapter, parametricity provides a general framework
to link terms in a 𝜆‑calculus, the most advanced example being univalent para‑
metricity. This very powerful translation makes it possible, at the cost of adding
an axiom, to generate proofs of equivalence by induction on the syntax, from any
term in 𝐶𝐶𝜔. By adding constants to the calculus, it is possible to implement a
tool inwhich theuser canaddheterogeneousparametricitywitnesses, i.e., equiv‑
alences between different types, before the start of the translation, allowing the
generation of equivalences between different goals and thus proof transfer.

However, the need to add the univalence axiom to the calculus is an issue for
two reasons. Firstly, as shown in § 8.2.4, many goals could be preprocessed with
the same result as a univalent parametricity translation, but without using the
univalence axiom, whereas univalent parametricity makes systematic use of it.
Secondly, with the pragmatic aim of implementing a new parametricity plugin to
ease proof transfer in COQ, it is necessary to ensure that the design space of the
parametricity translation is logically consistentwith theunderlying logical theory
of the proof assistant. Yet, the univalence axiom might introduce incompatibili‑
ties with the standard version of COQ.1 1: One generally uses it in the HoTT li‑

brary [65] inorder towork ina fully controlled
context.This chapter therefore presents a new parametricity relation, based on a new for‑

mulation of type equivalence (§ 9.1) that exposes all the information in a symmet‑
rical and atomic way, as opposed to the classic formulation presented in Defini‑
tion 8.2.4. The particularity of parametricity witnesses in this framework is that
they contain a variable amount of information, ranging from the raw parametric‑
ity witness in the weakest case to the univalent witness in the strongest case. As
a result, there is not a single stratified parametricity translation, but a set of pos‑
sible associations (§ 9.2), the aim being tomodulate the size of the parametricity
witness and avoid depending on the univalence axiomwhen it is possible.

9.1 Anew formulation of type equivalence

As shown previously, Definition 8.2.6 describes a univalent parametricity witness
both very rich— it systematically requires equivalence—and very dense— it con‑
tains only three values. As a result, the coherence condition in the case of the uni‑
verse requires the definition of the witness to be equivalent to equality between
types, which forces the translation to resort to the univalence axiom systemati‑
cally. However, some goals contain occurrences of □ for which it is excessive to
require equivalence in order to perform preprocessing.

Thesituationsuggests to search forahybridparametricity relation, needingequiv‑
alence only in cases where it is strictly necessary, and requiring less information
where possible. This involves a decomposition of type equivalence (§ 9.1.1), i.e.,
spreading out the information it contains. Once the decomposition is done, it
is possible to carve a hierarchy of parametricity witnesses by selectively picking
values from this Σ‑type (§ 9.1.2).

9 Type equivalence in kit 83

9.1.1 Decomposing equivalence

Let us first observe that the Definition 8.2.4 of type equivalence is quite asym‑
metrical, although this fact is somehow put under the rug by the infix 𝐴 ≃ 𝐵
notation. Indeed, first, the data of an equivalence 𝑒 ∶ 𝐴 ≃ 𝐵 privilege the left‑
to‑right direction, as ↑𝑒 is directly accessible from 𝑒 as its first projection, while
accessing the right‑to‑left transport requires an additional projection. Second,
the statement of the adjunction property, available in Definition 8.2.2, is:

ap 𝜙 ∘ sec ≑ ret ∘ 𝜙

This statement uses proofs sec and ret, respectively the section and retraction
properties of 𝑒, but not in a symmetrical way, although swapping them provides
an equivalent definition. This entanglement prevents any hope to trace the re‑
spective roles of each transport function during the course of a given univalent
parametricity translation. Exercise 4.2 in the HoTT book [64] however suggests a [64]: Univalent Foundations Program (2013),

Homotopy Type Theory: Univalent Founda-
tions of Mathematics

symmetrical wording of the definition of type equivalence, in terms of functional
relations.

DEFıNıTıON 9.1.1
Any relation 𝑅 ∶ 𝐴 → 𝐵 → □𝑖 is functionalwheneach valueof 𝐴 is uniquely
linked to exactly one value of 𝐵 in 𝑅 :

IsFun(𝑅) ∶= Π𝑎 ∶ 𝐴. IsContr(Σ𝑏 ∶ 𝐵. 𝑅 𝑎 𝑏)

where IsContr(⋅) is the standard contractibility predicate:

IsContr(𝑇) ∶= Σ𝑡0 ∶ 𝑇 . Π𝑡 ∶ 𝑇 . 𝑡 = 𝑡0

We can nowobtain an equivalent but symmetrical characterisation of type equiv‑
alence, as a functional relation whose symmetrisation is also functional.

LEMMA 9.1.2
For any types 𝐴, 𝐵 ∶ □𝑖, the type 𝐴 ≃ 𝐵 is equivalent to:

Σ𝑅 ∶ 𝐴 → 𝐵 → □𝑖. IsFun(𝑅) × IsFun(𝑅−1)

where relation 𝑅−1 ∶ 𝐵 → 𝐴 → □𝑖 just swaps the arguments of an arbitrary
𝑅 ∶ 𝐴 → 𝐵 → □𝑖.

Let us sketch a proof of this result, left as an exercise in [64].

We need the following lemma, that explains why IsFun(⋅) characterises func‑
tional relations:

LEMMA 9.1.3
For any types 𝐴, 𝐵 ∶ □𝑖, we have:

(𝐴 → 𝐵) ≃ Σ𝑅 ∶ 𝐴 → 𝐵 → □𝑖. IsFun(𝑅).

9 Type equivalence in kit 84

Proof. The proof goes by chaining the following equivalences:

Σ𝑅 ∶ 𝐴 → 𝐵 → □𝑖. IsFun(𝑅)
↓ definition

≡ Σ𝑅 ∶ 𝐴 → 𝐵 → □𝑖. Π𝑎 ∶ 𝐴. IsContr(Σ𝑏 ∶ 𝐵. 𝑅 𝑎 𝑏)
↓ swapping mutually non‑dependent binders

≃ Π𝑎 ∶ 𝐴. Σ𝑅 ∶ 𝐴 → 𝐵 → □𝑖. IsContr(Σ𝑏 ∶ 𝐵. 𝑅 𝑎 𝑏)
↓ by defining 𝑃 ∶= 𝑅 𝑎, the first binder is no longer dependent

≃ 𝐴 → Σ𝑃 ∶ 𝐵 → □𝑖. IsContr(Σ𝑏 ∶ 𝐵. 𝑃 𝑏)
↓ standard HoTT lemma

≃ 𝐴 → 𝐵

■

Proof of Lemma 9.1.2. The proof is done by chaining the following equivalences:

𝐴 ≃ 𝐵
↓ definition

≃ Σ𝑓 ∶ 𝐴 → 𝐵. IsEquiv(𝑓)
↓ classic result of HoTT

≃ Σ𝑓 ∶ 𝐴 → 𝐵. Π𝑏 ∶ 𝐵. IsContr(Σ𝑎 ∶ 𝐴. 𝑓 𝑎 = 𝑏)
↓ definition of IsFun(⋅)

≃ Σ𝑓 ∶ 𝐴 → 𝐵. IsFun(𝜆(𝑏 ∶ 𝐵)(𝑎 ∶ 𝐴). 𝑓 𝑎 = 𝑏)
↓ Lemma 9.1.3

≃ Σ(𝑓 ∶ Σ(𝑅 ∶ 𝐴 → 𝐵 → □𝑖). IsFun(𝑅)). IsFun(𝑓.1−1)
↓ associativity of Σ

≃ Σ𝑅 ∶ 𝐴 → 𝐵 → □𝑖. IsFun(𝑅) × IsFun(𝑅−1)

■

The symmetrical version of type equivalence provided by Lemma 9.1.2 however
does not expose explicitly the two transport functions in its data, although this
computational content can be extracted via projections on contractibility proofs.
In fact, it is possible to devise a definition of type equivalence that directly pro‑
vides the two transport functions in its data, while remaining symmetrical. The
essential ingredient of this rewording is the alternative characterisation of func‑
tional relations.

DEFıNıTıON 9.1.4
For any types 𝐴, 𝐵 ∶ □𝑖, a relation 𝑅 ∶ 𝐴 → 𝐵 → □𝑖 is a univalent map,
denoted IsUMap(𝑅), when there exists a function 𝑚 whose graph is exactly
described by 𝑅, and this very property comes with a coherence condition:

IsUMap(𝑅) ∶= Σ(𝑚 ∶ 𝐴 → 𝐵)
(𝜋1 ∶ Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑚 𝑎 = 𝑏 → 𝑅 𝑎 𝑏)
(𝜋2 ∶ Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 → 𝑚 𝑎 = 𝑏).

Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). (𝜋1 𝑎 𝑏) ∘ (𝜋2 𝑎 𝑏) ≑ 𝑖𝑑

Now comes the crux lemma of this subsection, formally proved in the code of
TROCQ:

9 Type equivalence in kit 85

LEMMA 9.1.5
For any types 𝐴, 𝐵 ∶ □𝑖 and any relation 𝑅 ∶ 𝐴 → 𝐵 → □𝑖,

IsFun(𝑅) ≃ IsUMap(𝑅).

Proof. The proof goes by rewording the left hand side step by step:

IsFun(𝑅)
↓ definitions

≃ Π𝑎0. Σ(𝑐 ∶ Σ𝑏. 𝑅 𝑎0 𝑏). Π(𝑝 ∶ Σ𝑏. 𝑅 𝑎0 𝑏). 𝑐 = 𝑝
↓ associativity of Σ

≃ Π𝑎0. Σ𝑏0. Σ𝑟 ∶ 𝑅 𝑎0 𝑏0. Π(𝑝 ∶ Σ𝑏. 𝑅 𝑎0 𝑏). (𝑏0 ; 𝑟) = 𝑝
↓ intuitionistic choice

≃ Σ𝜙 ∶ 𝐴 → 𝐵. Π𝑎0. Σ𝑟 ∶ 𝑅 𝑎0 (𝜙 𝑎0). Π(𝑝 ∶ Σ𝑏. 𝑅 𝑎0 𝑏). (𝜙 𝑎0 ; 𝑟) = 𝑝
↓ swapping of binders and abstraction of 𝑎0 in 𝑟

≃ Σ𝜙. Σ(𝑟 ∶ Π𝑎. 𝑅 𝑎 (𝜙 𝑎)). Π𝑎0. Π(𝑝 ∶ Σ𝑏. 𝑅 𝑎0 𝑏). (𝜙 𝑎0 ; 𝑟 𝑎0) = 𝑝
↓ splitting 𝑝

≃ Σ𝜙. Σ𝑟. Π𝑎0. Π𝑏0. Π(𝑟′ ∶ 𝑅 𝑎0 𝑏0). (𝜙 𝑎0 ; 𝑟 𝑎0) = (𝑏 ; 𝑟′)
↓ decomposition of the equality proof over a dependent pair

≃ Σ𝜙. Σ𝑟. Π𝑎0. Π𝑏0. Π𝑟′. Σ𝑒 ∶ 𝜙 𝑎0 = 𝑏0. 𝑟 𝑎0 =𝑒 𝑟′

↓ swapping of binders and abstraction of 𝑎0, 𝑏0, and 𝑟′ in 𝑒
≃ Σ𝜙. Σ𝑟. Σ(𝑒 ∶ Π𝑎. Π𝑏. 𝑅 𝑎 𝑏 → 𝜙 𝑎 = 𝑏). Π𝑎0. Π𝑏0. Π𝑟′. 𝑟 =𝑒 𝑎0 𝑏0 𝑟′ 𝑟′

We identify that 𝜙 is value 𝑚 in the definition of IsUMap(𝑅), and 𝑒 is value 𝜋2.
By renaming values and reorganising Σ‑types, we are left to show the following
property:

Σ(𝜋1 ∶ Π𝑎. Π𝑏. 𝑚 𝑎 = 𝑏 → 𝑅 𝑎 𝑏). (𝜋1 𝑎0 𝑏0) ∘ (𝜋2 𝑎0 𝑏0) ≑ id

≃ Σ(𝑟 ∶ Π𝑎. 𝑅 𝑎 (𝑚 𝑎)). Π(𝑟′ ∶ 𝑅 𝑎0 𝑏0). 𝑟 𝑎0 =𝜋2 𝑎0 𝑏0 𝑟′ 𝑟′

We refer the reader to the companion code. ■

As a direct corollary, we obtain a novel characterisation of type equivalence:

THEOREM 9.1.6
For any types 𝐴, 𝐵 ∶ □, we have:

(𝐴 ≃ 𝐵) ≃ Param⊤ 𝐴 𝐵

where relation Param⊤ 𝐴 𝐵 is defined as:

Param⊤ 𝐴 𝐵 ∶= Σ𝑅 ∶ 𝐴 → 𝐵 → □.
IsUMap(𝑅) × IsUMap(𝑅−1)

The resulting collectionof data is nowsymmetrical, as the reversedirectionof the
equivalence based on univalent maps can be obtained by flipping the relation
and swapping the two functionality proofs. If the 𝜂 rule for records is verified,
symmetry is even definitionally involutive.

9 Type equivalence in kit 86

9.1.2 Hierarchical recomposition of parametricitywitnesses

Definition 9.1.4 of univalent maps and the resulting rephrasing of type equiva‑
lence suggest introducing a hierarchy of structures for heterogeneous relations,
that explains how close a given relation is to type equivalence. In turn, this dis‑
tance is described in terms of structure available respectively on the left‑to‑right
and right‑to‑left transport functions.

DEFıNıTıON 9.1.7
For 𝑛, 𝑘 ∈ {0, 1, 2a, 2b, 3, 4}, and 𝛼 = (𝑛, 𝑘), relation Param𝛼 is:

Param𝛼 ∶= 𝜆(𝐴 𝐵 ∶ □).
Σ𝑅 ∶ 𝐴 → 𝐵 → □.Class𝛼 𝑅

where the map class Class𝛼 𝑅 itself unfolds to a pair type of two unilateral
witnesses—one from 𝐴 to 𝐵, one from 𝐵 to 𝐴 :

(M𝑛 𝐴 𝐵 𝑅) × (M𝑘 𝐵 𝐴 𝑅−1)

with M𝑖 defined as:

M0 𝐴 𝐵 𝑅 ∶= .
M1 𝐴 𝐵 𝑅 ∶= 𝐴 → 𝐵
M2a

𝐴 𝐵 𝑅 ∶= Σ𝑚 ∶ 𝐴 → 𝐵. 𝐺2a
𝐴 𝐵 𝑚 𝑅

M2b
𝐴 𝐵 𝑅 ∶= Σ𝑚 ∶ 𝐴 → 𝐵. 𝐺2b

𝐴 𝐵 𝑚 𝑅
M3 𝐴 𝐵 𝑅 ∶= Σ(𝑚 ∶ 𝐴 → 𝐵).

(𝐺2a
𝐴 𝐵 𝑚 𝑅) × (𝐺2b

𝐴 𝐵 𝑚 𝑅)
M4 𝐴 𝐵 𝑅 ∶= Σ(𝑚 ∶ 𝐴 → 𝐵)

(𝑔a ∶ 𝐺2a
𝐴 𝐵 𝑚 𝑅)

(𝑔b ∶ 𝐺2b
𝐴 𝐵 𝑚 𝑅).

Π𝑎 𝑏. (𝑔a 𝑎 𝑏) ∘ (𝑔b 𝑎 𝑏) ≑ 𝑖𝑑

with

𝐺2a
𝐴 𝐵 𝑚 𝑅 ∶= Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑚 𝑎 = 𝑏 → 𝑅 𝑎 𝑏

𝐺2b
𝐴 𝐵 𝑚 𝑅 ∶= Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 → 𝑚 𝑎 = 𝑏

For any types 𝐴 and 𝐵, andany 𝑟 ∶ Param𝛼 𝐴𝐵, wewill usenotations rel(𝑟),
map(𝑟) and comap(𝑟) to refer respectively to the relation, function of type
𝐴 → 𝐵, function of type 𝐵 → 𝐴, included in the data of 𝑟, for a suitable 𝛼.

DEFıNıTıON 9.1.8
We denote 𝒜 the set {0, 1, 2a, 2b, 3, 4}2, used to index map classes in
Definition 9.1.7. This set is partially ordered for the product order on
{0, 1, 2a, 2b, 3, 4} defined from the partial order 0 < 1 < 2∗ < 3 < 4 for
2∗ either 2a or 2b, and with 2a and 2b being incomparable.

REMARK 9.1.9
Relation Param(4,4) ofDefinition9.1.7 coincideswith the relation Param⊤ in‑
troduced in Theorem 9.1.6, equivalent to the univalent parametricity witness

9 Type equivalence in kit 87

type. Similarly, we denote as Param⊥ the relation Param(0,0), that amounts
to just having a relation 𝑅 ∶ 𝐴 → 𝐵 → □ as in the raw parametricity
translation. A relation equipped with structure Param(4,0) 𝐴 𝐵 (respectively
Param(3,3) 𝐴 𝐵) is the graph of a univalent map from 𝐴 to 𝐵 (respectively
an isomorphism between 𝐴 and 𝐵).

In the associated code, the corresponding lattice to the collection of M𝑛 is im‑
plemented as a hierarchy of dependent tuples —more precisely, of record types.
Each arrow of Figure 9.1 represents an inclusion of the data packed in the source
structure into the data packed in the target one. Moreover, nodes are labeled
with the names of the corresponding record fields introduced by the richer struc‑
ture.

1

2b

0

2a

map
R_in_map

map_in_R

R_in_mapK

3 4

Figure 9.1: Implementation of the hierarchy
of Definition 9.1.7

9.2 Populating the hierarchy of relations

Weshall now revisit the parametricity translations of § 8. In particular, combining
Theorem 9.1.6 with the abstraction theorem for univalent parametricity ensures
the existence of a term 𝑝□𝑖

such that:

⊢𝑢 𝑝□𝑖
∶ Param⊤

𝑖+1 □𝑖 □𝑖 and rel(𝑝□𝑖
) ≃ Param⊤

𝑖 .

Otherwise said, relation Param⊤ ∶ □ → □ → □ can be endowed with a
Param⊤ structure, assuming univalence. Similarly, the equation for universes,
in Figure 8.1 describing the raw parametricity translation, can be read as the fact
that relation Param⊥ on universes can be endowedwith a Param⊥ □□ struc‑
ture.

9.2.1 Translation of universes

Now the hierarchy of structures introduced by Definition 9.1.7 enables a finer
grained analysis of the possible relational interpretations of universes. Not only
would this put the raw and univalent parametricity translations under the same
hood, but it would also allow for generalising parametricity to a larger class of
relations. For this purpose, we generalise the previous observation, on the key
ingredient for translating universes: for each 𝛼 ∈ 𝒜, relation Param𝛼 may be
endowed with several structures from the lattice, and we need to study which
ones, dependingon 𝛼. Otherwise said,weneed to identify thepairs (𝛼, 𝛽) ∈ 𝒜2

for which it is possible to construct a term 𝑝𝛼,𝛽
□ such that:

⊢𝑢 𝑝𝛼,𝛽
□ ∶ Param𝛽 □□ and rel(𝑝𝛼,𝛽

□) ≡ Param𝛼 (9.1)

9 Type equivalence in kit 88

Note that herewe aim at a definitional equality between rel(𝑝𝛼,𝛽
□) and Param𝛼,

rather thananequivalence. It is easy to see that a term 𝑝𝛼,⊥
□ exists for any 𝛼 ∈ 𝒜,

as Param⊥ requires no structure on the relation. On the other hand, it is not
possible to construct a term 𝑝⊥,⊤

□ , i.e., to turn an arbitrary relation into a type
equivalence.

DEFıNıTıON 9.2.1
We denote as 𝒟□ the following subset of 𝒜2 :

𝒟□ = {(𝛼, 𝛽) ∈ 𝒜2 | 𝛼 = ⊤ ∨ 𝛽 ∈ {0, 1, 2a}2}

The associated code 2 constructs terms 𝑝𝛼,𝛽
□ for every pair (𝛼, 𝛽) ∈ 𝒟□, using 2: File Param_Type.v .

a meta‑program to generate them from a minimal collection of manual defini‑
tions. In particular, assuming univalence, it is possible to construct a term 𝑝⊤,⊤

□ ,
that can be seen as an analogue of the translation [□] of univalent parametric‑
ity. More generally, the provided terms 𝑝𝛼,𝛽

□ depend on univalence if and only if
𝛽 ∉ {0, 1, 2a}2.

9.2.2 Translation of dependent products

The next natural question is the study of the possible structures Param𝛾 that
can equip a relation associated with a product type Π𝑥 ∶ 𝐴. 𝐵, when the rela‑
tions associated with types 𝐴 and 𝐵 are respectively equipped with structures
Param𝛼 and Param𝛽.

Otherwise said, we need to identify the triples (𝛼, 𝛽, 𝛾) ∈ 𝒜3 for which it is
possible to construct a term 𝑝𝛾

Π such that:

Γ ⊢ 𝐴𝑅 ∶ Param𝛼 𝐴 𝐴′

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴′, 𝑥𝑅 ∶ 𝐴𝑅 𝑥 𝑥′ ⊢ 𝐵𝑅 ∶ Param𝛽 𝐵 𝐵′

Γ ⊢ 𝑝𝛾
Π 𝐴𝑅 𝐵𝑅 ∶ Param𝛾 (Π𝑥 ∶ 𝐴. 𝐵) (Π𝑥′ ∶ 𝐴′. 𝐵′)

and

rel(𝑝𝛾
Π 𝐴𝑅 𝐵𝑅) ≡ 𝜆𝑓 𝑓 ′. Π(𝑥 ∶ 𝐴)(𝑥′ ∶ 𝐴′)(𝑥𝑅 ∶ rel(𝐴𝑅) 𝑥 𝑥′).

rel(𝐵𝑅) (𝑓 𝑥) (𝑓 𝑥′)

The corresponding collection of triples can actually be described as a function
𝒟Π ∶ 𝒜 → 𝒜2, such that 𝒟Π(𝛾) = (𝛼, 𝛽) provides theminimal requirements
on the structures associated with 𝐴 and 𝐵, with respect to the partial order on
𝒜2. The associated code 3 provides a corresponding collection of terms 𝑝𝛾

Π for 3: File Param_forall.v .
each 𝛾 ∈ 𝒜, as well as all the associated weakenings. Once again, these defini‑
tions are generated by a meta‑program. Observe in particular that by symmetry,
𝑝(𝑚,𝑛)

Π can be obtained from 𝑝(𝑚,0)
Π and 𝑝(𝑛,0)

Π by swapping the latter and glue‑
ing it to the former. Therefore, the values of 𝑝𝛾

Π and 𝒟Π(𝛾) are completely de‑
termined by those of 𝑝(𝑚,0)

Π and 𝒟Π(𝑚, 0). In particular, for any 𝑚, 𝑛 ∈ 𝒜 :

𝒟Π(𝑚, 𝑛) = ((𝑚𝐴, 𝑛𝐴), (𝑚𝐵, 𝑛𝐵))

for 𝑚𝐴, 𝑛𝐴, 𝑚𝐵, 𝑛𝐵 ∈ 𝒜 defined as

𝒟Π(𝑚, 0) = ((0, 𝑛𝐴), (𝑚𝐵, 0))
𝒟Π(𝑛, 0) = ((0, 𝑚𝐴), (𝑛𝐵, 0))

We sum up in Figure 9.2 the values of 𝒟Π(𝑚, 0).4 4: The greyed‑out cells highlight a weaker
dependency in the caseof anarrowtypecom‑
paredwith the general caseof thedependent
product.

9 Type equivalence in kit 89

𝑚 𝒟Π(𝑚, 0)1 𝒟Π(𝑚, 0)2
0 (0, 0) (0, 0)
1 (0, 2a) (1, 0)
2a (0, 4) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 4) (3, 0)
4 (0, 4) (4, 0)

𝑚 𝒟→(𝑚, 0)1 𝒟→(𝑚, 0)2
0 (0, 0) (0, 0)
1 (0, 1) (1, 0)
2a (0, 2b) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 3) (3, 0)
4 (0, 4) (4, 0) Figure 9.2:Minimal dependencies for depen‑

dent and non‑dependent products at class
(𝑚, 0)

9.2.3 The case of non-dependent products

Note that in the case of a non‑dependent product, constructing 𝑝𝛾
→ requires less

structure on the domain 𝐴 of an arrow type 𝐴 → 𝐵, which motivates the in‑
troduction of function 𝒟→(𝛾). Using the combinator for dependent products to
interpret an arrow type, albeit correct, potentially pulls in unnecessary structure
— and axiom — requirements. The associated code 5 includes a construction of 5: File Param_arrow.v .
terms 𝑝𝛾

→ for any 𝛾 ∈ 𝒜.

A calculus for proof transfer 10
10.1Raw parametricity sequents . 90

10.2Univalent parametricity
sequents 92

10.3Annotated type theory 93

10.4The TROCQ calculus 94

10.5Constants 96

This chapter introduces TROCQ, a framework for proof transfer designed as a gen‑
eralisation of parametricity translations, so as to allow for interpreting types as
instances of the structures introduced in § 9.2.1. We adopt a sequent style pre‑
sentation, that closely fits the type system of 𝐶𝐶𝜔, while explaining in a consis‑
tent way the transformations of terms and contexts. This choice of presentation
departs from the standard literature about parametricity in Pure Type Systems.
Yet, it brings the presentation closer to actual implementations, whose neces‑
sary management of parametricity contexts is put under the rug by notational
conventions.

For this purpose, we successively introduce four calculi, of increasing sophisti‑
cation. We start with introducing this sequent style presentation by rephrasing
the raw parametricity translation (§ 10.1), and the univalent parametricity one
(§ 10.2). We then introduce 𝐶𝐶+

𝜔 , a calculus of constructions with annotations
on sorts and subtyping (§ 10.3), before defining the TROCQ calculus (§ 10.4).

10.1 Rawparametricity sequents

We introduce parametricity contexts, under the form of a list of triples packaging
pairs of variables together with a witness that they are related:

Ξ ∶∶= 𝜀 | Ξ, 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅

Wewrite (𝑥, 𝑥′, 𝑥𝑅) ∈ Ξ if there exists Ξ′ and Ξ″ such that:

Ξ = Ξ′, 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅, Ξ″

Wedenote Var(Ξ) thesequenceof variables related inaparametricity context Ξ :

Var(𝜀) = 𝜀 Var(Ξ, 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅) = Var(Ξ), 𝑥, 𝑥′, 𝑥𝑅

A parametricity context Ξ iswell formed, written Ξ ⊢, if the sequence Var(Ξ) is
duplicate‑free. In this case, we use the notation Ξ(𝑥) = (𝑥′, 𝑥𝑅) as a synonym
of (𝑥, 𝑥′, 𝑥𝑅) ∈ Ξ.

A parametricity judgment relates a parametricity context Ξ and three terms 𝑀 ,
𝑀 ′, 𝑀𝑅 of 𝐶𝐶𝜔. Parametricity judgments are defined by rules of Figure 10.1.
We denote and read them in the following way:

Ξ ⊢ 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅
In context Ξ, term 𝑀 translates to term 𝑀 ′, because 𝑀𝑅 .

LEMMA 10.1.1
The relation associating a term 𝑀 with pair (𝑀 ′, 𝑀𝑅) such that

Ξ ⊢ 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅

10 A calculus for proof transfer 91

Ξ ⊢ □𝑖 ∼ □𝑖 ∵ 𝜆(𝐴 𝐵 ∶ □𝑖). 𝐴 → 𝐵 → □𝑖
(PARAMSORT)

(𝑥, 𝑥′, 𝑥𝑅) ∈ Ξ Ξ ⊢
Ξ ⊢ 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅

(PARAMVAR)

Ξ ⊢ 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢ 𝑁 ∼ 𝑁 ′ ∵ 𝑁𝑅
Ξ ⊢ 𝑀 𝑁 ∼ 𝑀 ′ 𝑁 ′ ∵ 𝑀𝑅 𝑁 𝑁 ′ 𝑁𝑅

(PARAMAPP)

Ξ, 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅 ⊢ 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅
Ξ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑀 ∼ 𝜆𝑥′ ∶ 𝐴′. 𝑀 ′ ∵ 𝜆𝑥 𝑥′ 𝑥𝑅. 𝑀𝑅

(PARAMLAM)

Ξ ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅
Ξ, 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅 ⊢ 𝐵 ∼ 𝐵′ ∵ 𝐵𝑅 𝑥, 𝑥′ ∉ Var(Ξ)

Ξ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∼ Π𝑥′ ∶ 𝐴′. 𝐵′ ∵ 𝜆𝑓 𝑔. Π𝑥 𝑥′ 𝑥𝑅. 𝐵𝑅 (𝑓 𝑥) (𝑔 𝑥′) (PARAMPı)
Figure 10.1: PARAM: sequent‑style binary
parametricity translation

with Ξ a well‑formed parametricity context, is functional: for any term 𝑀
and any well‑formed Ξ :

∀𝑀 ′, 𝑁 ′, 𝑀𝑅, 𝑁𝑅,
Ξ ⊢ 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 ∧ Ξ ⊢ 𝑀 ∼ 𝑁 ′ ∵ 𝑁𝑅 ⟹

(𝑀 ′, 𝑀𝑅) = (𝑁 ′, 𝑁𝑅)

Proof. Immediate by induction on the syntax of 𝑀 . ■

This presentationof parametricity thusprovides analternativedefinitionof trans‑
lation J ⋅ K, from Figure 8.1, and accounts for the prime‑based notational conven‑
tion used in the latter.

DEFıNıTıON 10.1.2
A parametricity context Ξ is admissible for a well‑formed typing context Γ,
denoted Γ▷Ξ, when Ξ is well formed as a parametricity context and Γ pro‑
vides consistent type annotations for all terms in Ξ, that is, for any variables
𝑥, 𝑥′, 𝑥𝑅 such that Ξ(𝑥) = (𝑥′, 𝑥𝑅), and for any terms 𝐴′ and 𝐴𝑅 :

Ξ ⊢ Γ(𝑥) ∼ 𝐴′ ∵ 𝐴𝑅 ⟹ Γ(𝑥′) = 𝐴′ ∧ Γ(𝑥𝑅) ≡ 𝐴𝑅 𝑥 𝑥′

We can now state and prove an abstraction theorem:

THEOREM 10.1.3 (Abstraction theorem)

Γ ⊢
Γ ⊢ 𝑀 ∶ 𝐴 Γ ▷ Ξ Ξ ⊢ 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅

Γ ⊢ 𝑀 ′ ∶ 𝐴′ and Γ ⊢ 𝑀𝑅 ∶ 𝐴𝑅 𝑀 𝑀 ′

Proof. By induction on the derivation of Ξ ⊢ 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅. ■

10 A calculus for proof transfer 92

10.2 Univalent parametricity sequents

We now propose in Figure 10.2 a rephrased version of the univalent parametric‑
ity translation [14], using the same sequent style and replacing the translation [14]: TABAREAU et al. (2021), “Themarriage of

univalence and parametricity”of universes with the equivalent relation Param⊤. In this variant, parametricity
judgments are denoted in the following way, where Ξ is a parametricity context
and 𝑀 , 𝑀 ′, and 𝑀𝑅 are terms of 𝐶𝐶𝜔:

Ξ ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅

The 𝑢 index is a reminder that typing judgments Γ ⊢𝑢 𝑀 ∶ 𝐴 involved in the
associated abstraction theorem are typing judgments of 𝐶𝐶𝜔 augmented with
the univalence axiom.

Ξ ⊢𝑢 □𝑖 ∼ □𝑖 ∵ 𝑝⊤,⊤
□𝑖

(UPARAMSORT)

(𝑥, 𝑥′, 𝑥𝑅) ∈ Ξ Ξ ⊢
Ξ ⊢𝑢 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅

(UPARAMVAR)

Ξ ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢𝑢 𝑁 ∼ 𝑁 ′ ∵ 𝑁𝑅
Ξ ⊢𝑢 𝑀 𝑁 ∼ 𝑀 ′ 𝑁 ′ ∵ 𝑀𝑅 𝑁 𝑁 ′ 𝑁𝑅

(UPARAMAPP)

Ξ ⊢𝑢 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Ξ, 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅 ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅
Ξ ⊢𝑢 𝜆𝑥 ∶ 𝐴. 𝑀 ∼ 𝜆𝑥′ ∶ 𝐴′. 𝑀 ′ ∵ 𝜆𝑥 𝑥′ 𝑥𝑅. 𝑀𝑅

(UPARAMLAM)

Ξ ⊢𝑢 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Ξ, 𝑥 ∼ 𝑥′ ∵ 𝑥𝑅 ⊢𝑢 𝐵 ∼ 𝐵′ ∵ 𝐵𝑅
Ξ ⊢𝑢 Π𝑥 ∶ 𝐴. 𝐵 ∼ Π𝑥′ ∶ 𝐴′. 𝐵′ ∵ 𝑝⊤

Π 𝐴𝑅 𝐵𝑅
(UPARAMPı)

Figure10.2:UPARAM:univalentparametricity
rules

We can now rephrase the abstraction theorem for univalent parametricity.

THEOREM 10.2.1 (Univalent abstraction theorem)

Γ ⊢
Γ ⊢ 𝑀 ∶ 𝐴 Γ ▷ Ξ Ξ ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢𝑢 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅

Γ ⊢ 𝑀 ′ ∶ 𝐴′ and Ξ ⊢𝑢 𝑀𝑅 ∶ rel(𝐴𝑅) 𝑀 𝑀 ′

Proof. By induction on the derivation of Ξ ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅. ■

REMARK 10.2.2
In Theorem 10.2.1, term rel(𝐴𝑅) is a relation of type 𝐴 → 𝐴′ → □. Indeed:

Γ ⊢ 𝐴 ∶ □𝑖 Ξ ⊢𝑢 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Γ ▷ Ξ
Γ ⊢𝑢 𝐴𝑅 ∶ rel(𝑝⊤,⊤

□𝑖
) 𝐴 𝐴′

entails 𝐴𝑅 has type

rel(𝑝⊤,⊤
□𝑖

) 𝐴 𝐴′

≡ Param⊤ 𝐴 𝐴′

≡ Σ𝑅 ∶ 𝐴 → 𝐴′ → □. IsUMap(𝑅) × IsUMap(𝑅−1)

10 A calculus for proof transfer 93

10.3 Annotated type theory

We are now ready to generalise the relational interpretation of types provided by
the univalent parametricity translation, so as to allow for interpreting sorts with
instances of weaker structures than equivalence. For this purpose, we introduce
a variant 𝐶𝐶+

𝜔 of 𝐶𝐶𝜔 where each universe is annotated with a label indicating
the structure available on its relational interpretation. Recall from § 9.2.1 that we
have used pairs 𝛼 ∈ 𝒜2 to identify the different structures of the lattice disas‑
sembling type equivalence: these are the labels annotating sorts of𝐶𝐶+

𝜔 , so that
if 𝐴 has type □𝛼, then the associated relation 𝐴𝑅 has type Param𝛼 𝐴 𝐴′. The
syntax of 𝐶𝐶+

𝜔 is thus:

𝑀, 𝑁, 𝐴, 𝐵 ∈ 𝒯𝐶𝐶+𝜔
∶∶= □𝛼

𝑖 | 𝑥 | 𝑀 𝑁 | 𝜆𝑥 ∶ 𝐴. 𝑀 | Π𝑥 ∶ 𝐴. 𝐵
𝛼 ∈ 𝒜 = {0, 1, 2a, 2b, 3, 4}2 𝑖 ∈ ℕ

Before completing the actual formal definition of the TROCQ proof transfer frame‑
work, let us informally illustrate how these annotations shall drive the interpreta‑
tion of terms, and in particular, of a dependent product Π𝑥 ∶ 𝐴. 𝐵. In this case,
before translating 𝐵, three terms representing the bound variable 𝑥, its transla‑
tion 𝑥′, and the parametricity witness 𝑥𝑅 are added to the context. The type
of 𝑥𝑅 is rel(𝐴𝑅) 𝑥 𝑥′ where 𝐴𝑅 is the parametricity witness relating 𝐴 to its
translation 𝐴′. The role of annotation 𝛼 on the sort of type 𝐴 is thus to govern
the amount of information available in witness 𝑥𝑅, by determining the type of
𝐴𝑅. This intent is reflected in the typing rules of𝐶𝐶+

𝜔 , that rely on the definition
of the loci 𝒟□, 𝒟→ and 𝒟Π, introduced in § 9.2.

Typing terms in 𝐶𝐶+
𝜔 requires defining a subtyping relation ≼, defined by the

rules of Figure 10.3. The typing rules of 𝐶𝐶+
𝜔 are available in Figure 10.4 and fol‑

low standard presentations [67]. The ≡ relation in the SUBCONV rule is the con- [67]: AſPıNALL et al. (2001), “Subtyping de‑
pendent types”version relation, defined as the closure of𝛼‑equivalence and 𝛽‑reduction on this

variant of 𝜆‑calculus. We hence have two types of judgment in this calculus:

Γ ⊢+ 𝐴 ≼ 𝐵 and Γ ⊢+ 𝑀 ∶ 𝐴

where 𝑀 , 𝐴, and 𝐵 are terms in 𝐶𝐶+
𝜔 and Γ is a context in 𝐶𝐶+

𝜔 .1 1: Γ ∶∶= 𝜀 | Γ, 𝑥 ∶ 𝐴.

Γ ⊢+ 𝐴 ∶ 𝐾 Γ ⊢+ 𝐵 ∶ 𝐾 𝐴 ≡ 𝐵
Γ ⊢+ 𝐴 ≼ 𝐵 (SUBCONV)

𝛼 ≥ 𝛽 𝑖 ≤ 𝑗
Γ ⊢+ □𝛼

𝑖 ≼ □𝛽
𝑗

(SUBSORT) Γ ⊢+ 𝑀 ′ 𝑁 ∶ 𝐾 Γ ⊢+ 𝑀 ≼ 𝑀 ′

Γ ⊢+ 𝑀 𝑁 ≼ 𝑀 ′ 𝑁 (SUBAPP)

Γ, 𝑥 ∶ 𝐴 ⊢+ 𝑀 ≼ 𝑀 ′

Γ ⊢+ 𝜆𝑥 ∶ 𝐴. 𝑀 ≼ 𝜆𝑥 ∶ 𝐴. 𝑀 ′ (SUBLAM)

Γ ⊢+ Π𝑥 ∶ 𝐴. 𝐵 ∶ □𝛾
𝑖 Γ ⊢+ 𝐴′ ≼ 𝐴 Γ, 𝑥 ∶ 𝐴′ ⊢+ 𝐵 ≼ 𝐵′

Γ ⊢+ Π𝑥 ∶ 𝐴. 𝐵 ≼ Π𝑥 ∶ 𝐴′. 𝐵′ (SUBPı)

𝐾 ∶∶= □𝛾
𝑖 | Π𝑥 ∶ 𝐴. 𝐾

Figure 10.3: Subtyping rules for 𝐶𝐶+
𝜔

10 A calculus for proof transfer 94

Γ ⊢+ 𝑀 ∶ 𝐴 Γ ⊢+ 𝐴 ≼ 𝐵
Γ ⊢+ 𝑀 ∶ 𝐵 (CONV +) (𝛼, 𝛽) ∈ 𝒟□

Γ ⊢+ □𝛼
𝑖 ∶ □𝛽

𝑖+1
(SORT +)

(𝑥, 𝐴) ∈ Γ Γ ⊢+
Γ ⊢+ 𝑥 ∶ 𝐴 (VAR +) Γ ⊢+ 𝐴 ∶ □𝛾

𝑖 𝑥 ∉ Var(Γ)
Γ, 𝑥 ∶ 𝐴 ⊢+

(CONTEXT +)

Γ ⊢+ 𝑀 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢+ 𝑁 ∶ 𝐴
Γ ⊢+ 𝑀 𝑁 ∶ 𝐵[𝑥 ∶= 𝑁] (APP +)

Γ, 𝑥 ∶ 𝐴 ⊢+ 𝑀 ∶ 𝐵
Γ ⊢+ 𝜆𝑥 ∶ 𝐴. 𝑀 ∶ Π𝑥 ∶ 𝐴. 𝐵 (LAM +)

Γ ⊢+ 𝐴 ∶ □𝛼
𝑖 Γ ⊢+ 𝐵 ∶ □𝛽

𝑖 𝒟→(𝛾) = (𝛼, 𝛽)
Γ ⊢+ 𝐴 → 𝐵 ∶ □𝛾

𝑖
(ARROW +)

Γ ⊢+ 𝐴 ∶ □𝛼
𝑖 Γ, 𝑥 ∶ 𝐴 ⊢+ 𝐵 ∶ □𝛽

𝑖 𝒟Π(𝛾) = (𝛼, 𝛽)
Γ ⊢+ Π𝑥 ∶ 𝐴. 𝐵 ∶ □𝛾

𝑖
(Pı +)

Figure 10.4: Typing rules for 𝐶𝐶+
𝜔

10.4 The TROCQ calculus

The final stage of the announced generalisation consists in building an analogue
to the parametricity translations available in pure type systems, but for the an‑
notated type theory of § 10.3. This analogue is geared towards proof transfer,
and therefore designed to synthesise the output of the translation from its input,
rather than to check that certain pairs of terms are in relation. However, split‑
ting up the interpretation of universes into a lattice of possible relation structures
means that the source term of the translation is not enough to characterise the
desired output: the translation needs to be informed with some extra informa‑
tion about the expected outcome of the translation. In the TROCQ calculus, this
extra information is a type of 𝐶𝐶+

𝜔 .

We thus define TROCQ contexts as lists of quadruples:

Δ ∶∶= 𝜀 | Δ, 𝑥 @ 𝐴 ∼ 𝑥′ ∵ 𝑥𝑅 where 𝐴 ∈ 𝒯𝐶𝐶+𝜔

We also introduce a conversion function 𝛾 from TROCQ contexts to 𝐶𝐶+
𝜔 con‑

texts:

𝛾(𝜀) = 𝜀
𝛾(Δ, 𝑥 @ 𝐴 ∼ 𝑥′ ∵ 𝑥𝑅) = 𝛾(Δ), 𝑥 ∶ 𝐴

Now, a TROCQ judgment is a 4‑ary relation, denoted and read in the following
way:

Δ ⊢𝑡 𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅
In context Δ, term 𝑀 of annotated type 𝐴 translates to 𝑀 ′, because 𝑀𝑅.

TROCQ judgments are defined by the rules of Figure 10.5. This definition involves
a weakening function for parametricity witnesses, defined as follows.

10 A calculus for proof transfer 95

(𝛼, 𝛽) ∈ 𝒟□
Δ ⊢𝑡 □𝛼

𝑖 @□𝛽
𝑖+1 ∼ □𝛼

𝑖 ∵ 𝑝𝛼,𝛽
□𝑖

(TROCQSORT)

(𝑥, 𝐴, 𝑥′, 𝑥𝑅) ∈ Δ 𝛾(Δ) ⊢+
Δ ⊢𝑡 𝑥 @ 𝐴 ∼ 𝑥′ ∵ 𝑥𝑅

(TROCQVAR)

Δ ⊢𝑡 𝑀 @ Π𝑥 ∶ 𝐴. 𝐵 ∼ 𝑀 ′ ∵ 𝑀𝑅 Δ ⊢𝑡 𝑁 @ 𝐴 ∼ 𝑁 ′ ∵ 𝑁𝑅
Δ ⊢𝑡 𝑀 𝑁 @ 𝐵[𝑥 ∶= 𝑁] ∼ 𝑀 ′ 𝑁 ′ ∵ 𝑀𝑅 𝑁 𝑁 ′ 𝑁𝑅

(TROCQAPP)

Δ ⊢𝑡 𝐴 @□𝛼
𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 Δ, 𝑥 @ 𝐴 ∼ 𝑥′ ∵ 𝑥𝑅 ⊢𝑡 𝑀 @ 𝐵 ∼ 𝑀 ′ ∵ 𝑀𝑅

Δ ⊢𝑡 𝜆𝑥 ∶ 𝐴. 𝑀 @ Π𝑥 ∶ 𝐴. 𝐵 ∼ 𝜆𝑥′ ∶ 𝐴′. 𝑀 ′ ∵ 𝜆𝑥 𝑥′ 𝑥𝑅. 𝑀𝑅
(TROCQLAM)

Δ ⊢𝑡 𝐴 @□𝛼
𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 Δ ⊢𝑡 𝐵 @□𝛽

𝑖 ∼ 𝐵′ ∵ 𝐵𝑅 (𝛼, 𝛽) = 𝒟→(𝛿)
Δ ⊢𝑡 𝐴 → 𝐵 @□𝛿

𝑖 ∼ 𝐴′ → 𝐵′ ∵ 𝑝𝛿
→ 𝐴𝑅 𝐵𝑅

(TROCQARROW)

Δ ⊢𝑡 𝐴 @□𝛼
𝑖 ∼ 𝐴′ ∵ 𝐴𝑅

Δ, 𝑥 @ 𝐴 ∼ 𝑥′ ∵ 𝑥𝑅 ⊢𝑡 𝐵 @□𝛽
𝑖 ∼ 𝐵′ ∵ 𝐵𝑅 (𝛼, 𝛽) = 𝒟Π(𝛿)

Δ ⊢𝑡 Π𝑥 ∶ 𝐴. 𝐵 @□𝛿
𝑖 ∼ Π𝑥′ ∶ 𝐴′. 𝐵′ ∵ 𝑝𝛿

Π 𝐴𝑅 𝐵𝑅
(TROCQPı)

Δ ⊢𝑡 𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅 𝛾(Δ) ⊢+ 𝐴 ≼ 𝐵
Δ ⊢𝑡 𝑀 @ 𝐵 ∼ 𝑀 ′ ∵ ⇓𝐴

𝐵 𝑀𝑅
(TROCQCONV)

Figure 10.5: TROCQ rules

⇓□𝛼
𝑖

□𝛼′
𝑖

𝑡𝑅 ∶= ⇊𝛼
𝛼′ 𝑡𝑅 ⇓𝐴 𝑀

𝐴′ 𝑀′ 𝑁𝑅 ∶= ⇓𝐴
𝐴′ 𝑀 𝑀 ′ 𝑁𝑅

⇓𝜆𝑥∶𝐴. 𝐵
𝜆𝑥∶𝐴′. 𝐵′ 𝑀 𝑀 ′ 𝑁𝑅 ∶= ⇓𝐵[𝑥∶=𝑀]

𝐵′[𝑥∶=𝑀′] 𝑁𝑅

⇓Π𝑥∶𝐴. 𝐵
Π𝑥∶𝐴′. 𝐵′ 𝑀𝑅 ∶= 𝜆𝑥 𝑥′ 𝑥𝑅. ⇓𝐵

𝐵′ (𝑀𝑅 𝑥 𝑥′ (⇓𝐴′

𝐴 𝑥𝑅)) ⇓𝐴
𝐴′ 𝑀𝑅 ∶= 𝑀𝑅

Figure 10.6:Weakening of parametricity wit‑
nesses

DEFıNıTıON 10.4.1
For all 𝑝, 𝑞 ∈ {0, 1, 2a, 2b, 3, 4}, such that 𝑝 ≥ 𝑞, we define the unilateral
weakening map ↓𝑝

𝑞 ∶ M𝑝 → M𝑞 to be the function forgetting the fields from
M𝑝 that are not in M𝑞. For all 𝛼, 𝛽 ∈ 𝒜, such that 𝛼 ≥ 𝛽, function ⇊𝛼

𝛽
weakening a Param𝛼 𝐴 𝐵 to a Param𝛽 𝐴 𝐵 is defined by:

⇊(𝑚,𝑛)
(𝑝,𝑞) (𝑅 ; (𝑀→, 𝑀←)) ∶= (𝑅 ; (↓𝑚

𝑝 𝑀→, ↓𝑛
𝑞 𝑀←)).

The weakening function on parametricity witnesses is defined in Figure 10.6
by extending function ⇊𝛼

𝛽 to all relevant pairs of types of 𝐶𝐶+
𝜔 , i.e., ⇓𝑇

𝑈 is
defined for 𝑇 , 𝑈 ∈ 𝒯𝐶𝐶+𝜔

as soon as 𝑇 ≼ 𝑈 .

Anassociatedabstraction theoremrelateswell‑formedTROCQ judgmentsand typ‑
ing in 𝐶𝐶+

𝜔 :

10 A calculus for proof transfer 96

THEOREM 10.4.2 (TROCQ abstraction theorem)

𝛾(Δ) ⊢+ 𝛾(Δ) ⊢+ 𝑀 ∶ 𝐴
Δ ⊢𝑡 𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅 Δ ⊢𝑡 𝐴 @□𝛼

𝑖 ∼ 𝐴′ ∵ 𝐴𝑅

𝛾(Δ) ⊢+ 𝑀 ′ ∶ 𝐴′ and 𝛾(Δ) ⊢+ 𝑀𝑅 ∶ rel(𝐴𝑅) 𝑀 𝑀 ′

Proof. By induction on derivation Δ ⊢𝑡 𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅. ■

Note that type 𝐴 in the typing hypothesis 𝛾(Δ) ⊢+ 𝑀 ∶ 𝐴 of the abstraction
theorem is exactly the extra information passed to the translation. The latter can
thus alsobe seenas an inferencealgorithm, that infers annotations for theoutput
of the translation from that of the input.

REMARK 10.4.3
Since by definition of 𝑝𝛼,𝛽

□ (Equation 9.1), we have ⊢𝑡 □𝛼 @□𝛽 ∼ □𝛼 ∵ 𝑝𝛼,𝛽
□ ,

by applying Theorem 10.4.2 with 𝛾(Δ) ⊢+ 𝐴 ∶ □𝛼, we get:

𝛾(Δ) ⊢+ 𝐴 ∶ □𝛼 Δ ⊢𝑡 𝐴 @□𝛼 ∼ 𝐴′ ∵ 𝐴𝑅

𝛾(Δ) ⊢+ 𝐴𝑅 ∶ rel(𝑝𝛼,𝛽
□) 𝐴 𝐴′ .

Now by the same definition, for any 𝛽 ∈ 𝒜, rel(𝑝𝛼,𝛽
□) = Param𝛼, hence

𝛾(Δ) ⊢ 𝐴𝑅 ∶ Param𝛼 𝐴 𝐴′, as expected by the type annotation 𝐴 ∶ □𝛼 in
the input of the translation.

REMARK 10.4.4
By applying Remark 10.4.3 with ⊢+ □𝛼 ∶ □𝛽, we get:

⊢+ 𝑝𝛼,𝛽
□ ∶ Param𝛽 □𝛼 □𝛼

as expected, provided that (𝛼, 𝛽) ∈ 𝒟□.

10.5 Constants

Concrete applications require extending TROCQ with constants. Constants are
similar to variables, except that they are stored in a global context instead of a
typing context. A crucial difference though is that a constant may be assigned
several different annotated types in𝐶𝐶+

𝜔 . Consider for example, a constant list,
standing for the type of polymorphic lists. As list 𝐴 is the type of lists with ele‑
ments of type 𝐴, it can be annotated with type □𝛼 → □𝛼 for any 𝛼 ∈ 𝒜.

Every constant 𝑐 declared in the global environment has an associated collec‑
tion of possible annotated types 𝑇𝑐 ⊂ 𝒯𝐶𝐶+𝜔

. We require that all the possible
annotated types of a same constant share the same erasure2 in 𝐶𝐶𝜔, i.e.: 2: It is a function | ⋅ |− defined as the re‑

cursive withdrawal of all annotations on uni‑
verses.∀𝑐, ∀𝐴, ∀𝐵, 𝐴, 𝐵 ∈ 𝑇𝑐 ⟹ | 𝐴 |− = | 𝐵 |−

For example, 𝑇list = {□𝛼 → □𝛼 | 𝛼 ∈ 𝒜}.

In addition, we provide translations 𝒟𝑐(𝐴) for each possible annotated type 𝐴
of each constant 𝑐 in the global context. For example, 𝒟list(□(1,0) → □(1,0)) is
well defined and equal to the following translation:

(list, 𝜆𝐴 𝐴′ 𝐴𝑅. (List.All2𝐴𝑅 ; List.mapmap(𝐴𝑅)))

10 A calculus for proof transfer 97

where List.All2𝐴𝑅 relates lists thatare relatedby 𝐴𝑅 element‑wise, List.map
is the standardmap function on lists and map(𝐴𝑅) ∶ 𝐴 → 𝐴′ extracts the func‑
tion from witness 𝐴𝑅 of type Param(1,0) 𝐴 𝐴′ ≡ Σ𝑅. 𝐴 → 𝐴′. Part of these
translations can be generated automatically by weakening.

We describe in Figure 10.7 the additional rules for constants in 𝐶𝐶+
𝜔 and TROCQ.

Note that for an input term featuring constants, an unfortunate choice of annota‑
tion may lead to a stuck translation.

𝑐 ∈ 𝒞 𝐴 ∈ 𝑇𝑐
Γ ⊢ 𝑐 ∶ 𝐴 (CONſT +) 𝒟𝑐(𝐴) = (𝑐′, 𝑐𝑅)

Δ ⊢ 𝑐 @ 𝐴 ∼ 𝑐′ ∵ 𝑐𝑅
(TROCQCONſT)

Figure 10.7: Additional constant rules for
𝐶𝐶+

𝜔 and TROCQ

Conclusion andperspectives 11
The functionalities of the prototype plugin presented in this part III can be ex‑
tended in several directions. It would be particularly fruitful to connect it with
tools able to automate the generation of equivalence proofs, such as PUMPKıN
Pı [68]. Other improvements, e.g., addressing the case of COQ’s impredicative [68]: RıNGER et al. (2021), “Proof repair across

type equivalences”sort, involve non‑trivial implementation issues, related to COQ’s management of
universe polymorphism. We now discuss how the current state of this prototype
compares with other implemented approaches to proof transfer in interactive
theorem proving, listed in chronological order in the summary Table 11.1. For
each such tool, the table indicates whether a given feature is available (green),
not available (dark orange) or only partially available (yellow).

In the context of type theory, the idea that the computational content of type
isomorphisms can be used for proof transfer already appears in [69]. The first [69]: BARTHE et al. (2001), “Type Isomor‑

phisms and Proof Reuse in Dependent Type
Theory”

implementation report of a tool based on this idea appeared soon after [70]. Im‑

[70]: MAGAUD (2003), “Changing Data Repre‑
sentation within the Coq System”

plemented in ameta‑language and based on proof rewriting, this heuristic trans‑
lationwas producing a candidate proof term froma given proof term, with no for‑
mal guarantee, not even that of beingwell typed. Generalised rewriting [43], that
generalises setoid rewriting to preorders, is also a variant of proof transfer, albeit
within the same type. As such, it allows in particular rewriting under binders. The
restriction tohomogeneous relationshowever excludesapplications toquasi par‑
tial equivalence relations (QPER) [71], or to data type representation change. [71]: KRıſHNAſWAMı et al. (2013), “Internal‑

izing Relational Parametricity in the Exten‑
sional Calculus of Constructions”The other proof transfer methods we are aware of all address the case of het‑

erogeneous relations. Incidentally, they can thus also be used for the homoge‑
neous case, although this special case is seldom emphasised. The COQ EFFEC‑
TıVE ALGEBRA LıBRARY (COQEAL) [45, 72] and the IſABELLE/HOL TRANſFER [73–76] [73]: LAMMıCH (2013), “AutomaticDataRefine‑

ment”

[74]: HAFTMANN et al. (2013), “Data Refine‑
ment in Isabelle/HOL”

[75]:HUFFMANet al. (2013), “LiftingandTrans‑
fer: A Modular Design for Quotients in Is‑
abelle/HOL”

[76]: LAMMıCHet al. (2019), “AutomaticRefine‑
ment to Efficient Data Structures: A Compari‑
son of Two Approaches”

packages pioneered the use of parametricity‑based methods for proof transfer,
motivated by the refinement of proof‑oriented data‑structures to computation‑
oriented counterparts. Togetherwith a subsequent generalisation of the COQEAL
approach [77], these tools address the case of a transfer between a subtype of a

[77]: ZıMMERMANN et al. (2015), “Automatic
and Transparent Transfer of Theorems along
Isomorphisms in the Coq Proof Assistant”

certain type 𝐴 and a quotient of a certain type 𝐵, i.e., the case of trivial QPER in
which the zig‑zag morphism is a partial surjection from 𝐴 to 𝐵.

The next two columns of the table concern proof transfer in presence of the uni‑
valence principle, either axiomatic in the case of univalent parametricity [14], or
computational in thecaseof [78]. Key ingredientsofunivalentparametricitywere

[78]: ANGıULı et al. (2021), “Internalizing rep‑
resentation independence with univalence”

already present in earlier seemingly unpublished work [79], implemented using

[79]: ANAND et al. (2017), Revisiting Para-
metricity: Inductives andUniformity of Propo-
sitions

an outdated ancestor of the METACOQ library [46].

Table 11.1 indicates which tools can transfer along heterogeneous relations, as
this is a prerequisite to changing type representation, andwhich ones operate by
proving an internal implication lemma, as opposed to a monolithic translation
of an input proof term. We borrow the terminology used in [14], in which antic-
ipation refers to the need to define a dedicated structure for the signature to be
transported. Binders can prevent transfer, as well as dependent types. The latter
are recovered in presence of univalence. The first published publication [80] on

[80]: TABAREAU et al. (2018), “Equivalences
for free: univalent parametricity for effective
transport”

the univalent parametricity translation suggested that the translation does not
pull the axiom in when translating terms in the 𝐹 𝜔 fragment. However, TROCQ
canget rid of it for a strictly larger class of terms. Finally, the table indicateswhich

11 Conclusion and perspectives 99

Heterogeneous relations

Internal

No anticipation

Substitution under Π

Substitution in dep. types

No systematic univalence

Preorder relations

Subrelations

QERs

Subtyping relations

System

[M
agaud 2003]

Setoid re
writ

e [S
ozeau 2009]

CoqEAL [C
ohen et a

l. 2
013]

Isabelle
/H

OL Transfer (2
013)

[Zim
merm

ann and Herbelin
 2015]

[Tabareau et a
l. 2

021]

[Angiuli e
t a

l. 2
021]

Trakt [B
lot e

t a
l. 2

023]

Trocq (2
023)

Coq
Coq

Coq
Isabelle/HOL

Coq
Coq/HoTT

(Cubical) Agda

Coq
Coq or Coq/HoTT

? ? ? ? ?

Figure 11.1:Comparison of proof transfer au‑
tomation devices

approaches can deal with quasi-equivalence relations (QER), and with (explicit)
subtyping relations.

In its current state, the TROCQ plugin can already address the proof transfer bu‑
reaucracy of state‑of‑the‑art formal proofs, in the context of abstract mathemat‑
ics, programme verification, or both [81]. We expect that our work, once put in [81]: ALLAMıGEON et al. (2023), “A Formal Dis‑

proof of Hirsch Conjecture”production, makes it possible to have the same lemma applicable to a wide va‑
riety of different types: isomorphic types, subtypes, and quotient types. This
framework moreover opens the way to a broader range of extensions, e.g., per‑
forming unificationmodulo both generalised rewriting and heterogeneous trans‑
fer relations, potentially solvingproblemssometimes referred toasconcept align-
ment. Weconcludewith twoconcrete sticky issues in interactive theoremproving
that such extensions could help addressing. The first one is the identification of
canonical natural number objects in types, e.g., {𝑥 ∶ ℝ | ∃𝑛 ∶ ℕ, 𝑥 = 𝜄(𝑛)}, etc.
The second one is the identification of different parametric constructions, which
happen to coincide for some specific classes of parameters, e.g., the ring ℤ/𝑞ℤ,
defined for all integers 𝑞 > 0, and the GALOıſ field 𝔽𝑞, defined when 𝑞 = 𝑝𝑘,
happen to be canonically isomorphic if and only if 𝑞 is prime.

IMPLEMENTATION
OF PREPROCESSING TOOLS

WITHCOQ-ELPI

Introduction

In the two previous parts, we presented two solutions to deal with the general
problem of proof transfer, from a particular angle. The first one, TRAKT, was de‑
signed starting from zify, an ad hoc preprocessing tool targeting the lia tactic.
The second one, TROCQ, is a parametricity translation, a more general method
with a more theoretical approach. In this part, we focus on the implementation
of these tools. In this first chapter, we stand at the level of the software architec‑
ture used to create these plugins. In the next chapter, wedetail the problems that
arise when implementing a parametricity plugin such as TROCQ.

Software architecture
of a preprocessing plugin 12

12.1 User knowledge base . . . 103
12.1.1Use of COQ‑ELPı databases . 103
12.1.2Storage of COQ terms 104
12.2 Traversal of the initial goal 104
12.2.1A translation tactic in COQ‑

ELPı 104
12.2.2TRAKT: lessons of a first

attempt 105

Despite their different goal preprocessing strategies, both tools designed in this
thesis tackle a similar problem and have similar needs. Therefore, we devised
a common software architecture for both plugins, illustrated in Figure 12.11

1: Theparts in orange correspond to thepart
of the proof scenario to implement in the pre‑
processing plugin.

and
presented in this chapter. First, thepreprocessing tool needs to knowwhichmod‑
ifications it needs to apply to the initial goal. The user therefore needs to com‑
municate information to it before entering proof mode. To do this, our architec‑
ture integrates a knowledge base into the tool, with commands to add data to it
(§ 12.1). Second, the plugin must implement a preprocessing algorithm accessi‑
ble from COQ’s proof mode. The architecture thus includes a tactic that imple‑
ments a translation taking as input the initial goal and possibly parameters, in
order to build, using the knowledge base, the associated goal after preprocess‑
ing along with a proof term justifying the substitution (§ 12.2). After running the
preprocessing tool, the user only has to prove the associated goal, ideally with
another proof automation tool.

knowledge base

commands

preprocessing
tacticProof.

Qed.

user knowledge

initial goal

parameters

associated goal

automation tactic

proof of G' $% G

proof of G'

G'

G

Figure 12.1: Global software architecture for
preprocessing plugins developed during this
thesis

For example, to preprocess the following initial goal, both in the context of TRAKT
andTROCQ, theusermust statehowtheywish to translate type int, its 0 constant
and - operation, as well as equality:

forall (x y : int), x - y = 0

This information is user knowledge, given via commands and stored in the knowl‑
edge base. The user then executes the tactic, providing parameters specific to
each tool. The tactic traverses the initial goal andbuilds theassociatedgoal along
with an implication proof between the two, allowing a change in the proof con‑
text, leaving only the associated goal to prove. A plausible associated goal could
be the following, for instance with lia as the automation tactic, associating int
to Z, equality to itself, and the various values in int with their counterparts in
Z :

forall (x y : Z), x - y = 0

12 Software architecture of a preprocessing plugin 103

Since both plugins were developed in COQ‑ELPı, we will use examples alterna‑
tively in TRAKT and TROCQ to illustrate our points. This technical choicewasmade
for several reasons. First, this meta‑language offers a high level of abstraction re‑
garding the syntax of COQ terms. Indeed, the HOAS encoding of termsworks very
well with eigenvariables of the ELPılanguage, allowing the handling of 𝜆‑terms
containing binders without ever having tomaintain correct DE BRUıJN indices. In
addition, the use of meta‑level variables to represent COQ unification variables
makes it easy to handle terms with holes — a frequent situation when quoting
terms written in COQ’s surface syntax — or even to forge terms with holes in the
meta‑programs and delegate some of the work to COQ by exploiting its elabora‑
tor and typechecker. Next, the wrapper formed by COQ‑ELPı around the ELPı lan‑
guage provides a real toolbox for meta‑programming in COQ, with various useful
APIs: creation of commands and tactics, fine control over the behaviour of unifi‑
cation and conversion, definition of terms and types, manipulation of universes,
etc. Finally, the ELPı language is built around the paradigmof logic programming,
lending itself very well to the implementation of recursive algorithms traversing
syntax trees, such as those developed during this thesis. A fortiori, when they are
based on inference rules, like the algorithm at the heart of TROCQ, we obtain a di‑
rect correspondence between the code and the description of the algorithm on
paper.

12.1 User knowledgebase

An asset of both plugins presented in this thesis is to be extensible, i.e., to allow
the user to customise preprocessing by registering additional information before
translating the goal. In the case of TRAKT, the additional data are embeddings of
types, relations, symbols, etc. In the case of TROCQ, they are parametricity wit‑
nesses. This section presents the use of COQ‑ELPı databases as a user knowledge
base (§ 12.1.1), aswell as interesting technical aspectsof the storageof COQ terms
in a meta‑level database (§ 12.1.2).

12.1.1 Use of COQ-ELPI databases

Plugins TRAKT and TROCQ use several databases to organise the information to
be stored. As explained in § 4.2.1, within COQ‑ELPı, a database is a series of facts,
i.e., predicate instances that are always true, whose arguments are the data we
wish to store. Thus, for example, TRAKT registers symbol embeddingsas instances
of a symbol predicate taking as arguments the necessary data, listed in § 6.1.3.
In the same way, each different type of information to store is associated with a
particular predicate in the database, so as to structure the code and give infor‑
mative error messages when a piece of data is missing. In TROCQ, axioms also
have a dedicated predicate, so that the plugin can be used without adding them
automatically, and so that goals that do not require them can still be translated.
Commands are defined in order to add data in a cleaner way. For example, in the
case of a witness u of the univalence axiom, the command to use in TROCQ is the
following:

Param Register Univalence u.

12 Software architecture of a preprocessing plugin 104

12.1.2 Storage of COQ terms

Most proof automation tools work with a knowledge base containing constants
selected from the context. For example, the ring tactic uses a base of instances
of an algebraic ring structure, and the auto tactic performs a proof search from a
list of lemmaschosenby theuser. Thedesignof theseknowledgebases isdifficult
because storing COQ terms at the meta level raises subtle questions. Indeed, the
surface syntax of COQ hides various pieces of information through notations and
implicit elements—arguments, universe instances, etc. However, theseholes left
in the terms are actually variables that can interact with the global state of the
proof assistant, via unification constraints or the graph of universe constraints
for example, as soon as unification is triggered between a term with holes and
another term, which happens systematically when reading a database indexed
by such terms. This means that storing terms with holes in a database is not a
robust choice. However, this syntactic lightness is crucial from the user’s point of
view, as manually annotating all the terms in their entirety would make the use
of the proof assistant very tedious. In cases where the holes left in the terms can
be inferred from the rest of the term, we can delegate this work to the COQ elabo‑
rator and store the complete term obtained. However, the elaborator always fills
a term in a certain context, that may vary between the time at which the knowl‑
edge base is filled and the time at which the preprocessing tactic is executed. For
instance, two terms that appear to be unifiable may not be so in their complete
form, if the term searched in the database is syntactically different from the one
thatwaspreviously registered after going through the elaborator. Making system‑
atic use of elaboration on the arguments of a COQ command intended to register
terms in ameta‑level database is therefore a naive solution, which leads to errors
that are difficult to trace in the long run. In practice, an interesting trade‑off, in
order to allow the user a certain amount of freedom in the syntax while storing
termswithmaximum independence fromtheglobal stateof COQ, is to store in the
database only global references, i.e., terms identified by their name registered in
COQ.2 2: These include constants, inductive types,

and constructors.

12.2 Traversal of the initial goal

Once the knowledge base has been designed and filled by the user, the prepro‑
cessing tool translates the initial goal. This translation takes the shape of a re‑
cursive algorithm defined by induction on the syntax. This section presents the
general structure of a tactic implementing such a translation (§ 12.2.1), as well as
the lessons to be learnt from the implementation of TRAKT (§ 12.2.2).

12.2.1 A translation tactic in COQ-ELPI

The role of the translation tactic is to traverse the initial goal in order tobuild both
the associated goal and a proof that substituting it for the initial goal is a valid
operation. Then, it must apply this proof, to leave the user with a proof context
containing only the associated goal, without any additional proof obligation.

Structureof the tactic In both TRAKT and TROCQ, the translation tactic reads the
input goal andcalls themaingoal traversal predicate, that outputs theassociated
goal along with a preprocessing proof. We then use the refine operation, that

12 Software architecture of a preprocessing plugin 105

performs essentially the same action as the COQ tactic with the same name, i.e.,
applying a proof term with holes, the holes representing the new proof obliga‑
tions. In our case, we expect a single hole, having the type of the associated goal
and ideally being provable using a proof automation tactic. The call is therefore
the following:

refine {{ lp:Proof (_ : lp:EndGoalTy) }} InitialGoal NewGoals

Variable Proof contains the proof of implication, and EndGoalTy is the associ‑
ated goal, both generated by the translation.

Recursive translation predicate Implementing the translation algorithm is the
focal point of a preprocessing tactic. It is a recursive predicate that takes as input
at least one term that in the first call will be the initial goal, and returns as output
at least two terms, the associated goal and the proof of validity for the substitu‑
tion.

ELPı predicates can be defined with several instances, and PROLOG‑like unifica‑
tion in this meta‑language allows selecting the instance corresponding to the
current case to be processed. If the arguments in the head of the instance do
not unify with the arguments of the current call to the predicate, the execution
moves on to the next instance, and so on until failure.3 In the case of a predicate 3: It is good practice to always define a last

instance catching all the remaining cases and
failing with an error message.

defined by induction on the syntax of a COQ term, onewrites at least one instance
per construct available in the language. Several sub‑cases for a same construct
can be distinguished by executing test predicates at the beginning of the body of
each instance. If one of these predicates fails, the next instance will be selected.
To force the program to explore only one instance, one can add a cut—with char‑
acter ! —after these test predicates. All thismakes it easier to organise the code
and define the order of priority when testing the various available cases.

Furthermore, in order to apply in COQ a proof term as complete as possible when
calling refine, it is necessary to give the proof to a typing and/or elaboration
predicate in order to fill the last holes that do not represent a future proof but a
type annotation left implicit in the translation predicate. This allows delegating
some of the work to COQ andwriting the proofs in amore natural way during the
development of the plugin.

12.2.2 TRAKT: lessons of afirst attempt

The first prototype implemented following the software architecture presented
earlier is TRAKT, presented in this thesis in part I. The plugin improves preprocess‑
ing based on canonisation, previously embodied by the zify tactic, by perform‑
ing a similar but extended translation to handle goals in the SMT family. The im‑
plementation of TRAKT allowed to identify interesting design patterns to bear in
mind for future projects in COQ‑ELPı. It has a few flaws, but overall it achieves its
objective, as shown by its successful integration into the SMTCOQ library. This
subsection is an experience report.

Encoding of terms inHOAS A first useful feature of COQ‑ELPı is the encoding of
terms in HOAS. Thanks to this encoding, contexts can be expressed as functions
in themeta‑language. For example, a context 𝐶[⋅] is representedwith a variable
C of type term term. Completing the context with a term x then amounts to
performing a functional application C x ; updating it by going under a new node,

12 Software architecture of a preprocessing plugin 106

for example a one‑argument function f, is done by creating a newmeta‑function
C' :4 4: In this code, x is a universal constant rep‑

resenting a bound variable, allowing access
to the body of meta‑function C to define C'.
Because of its status in ELPı, it must bemade
explicit as an argument to C', so that it does
not escape its local scope.

pi x\ C' x = C (app [f, x])

In this encoding, bindersare theassociationof a termrepresenting the typeof the
bound variable and ameta‑function representing the body of the function in the
caseof an abstractionor the codomain in the caseof a dependent product. Cross‑
ing such a binder is done by creating a fresh local variable using the sameprocess
as above. All the terms computed from the application of the meta‑function are
expressed as a function of this variable, allowing terms to remain closed through‑
out theprocess. As these termsarealsometa‑functions, it suffices toaddabinder
constructor to obtain a well‑formed COQ term. For example, here is a snippet ex‑
tracted from the instance of themain predicate of TRAKT in charge of preprocess‑
ing dependent products:5 5: In COQ‑ELPı, dependent products are rep‑

resented with prod N T F terms, where N
is the display name of the bound variable
in COQ, T is the domain, and F is a meta‑
function containing the codomain.

preprocess (prod N T F) / ... ⁎/ :- !,
@pi-decl N T x\ preprocess (F x) / ... ⁎/ (F' x) (PF x),
%

In one line of code, we introduce a fresh variable x in the domain T to make a
recursive call on the codomain F x and get the associated codomain F' x as
well as a proof PF x. The rest of the predicate reworks these terms to obtain the
associated dependent product and the preprocessing proof.

Finally, the abstraction of a subterm 𝑡 in a term 𝑢 into a function 𝑓 such that
𝑢 ≡ 𝑓 𝑡 is a simple task in COQ‑ELPı. Indeed, there is a copy predicate in the
standard library, initially defined as a deep identity: it traverses the whole struc‑
ture of a term and applies an identity to the leaves of the tree. By adding a lo‑
cal instance of copy, it is possible to perform substitutions: with the additional
instance copy X Y , any occurrence of X encountered during the traversal is re‑
placed with Y in the output term of the predicate. By representing 𝑡 with a vari‑
able T and 𝑢 with U, we can abstract 𝑡 in 𝑢 in a single line:

pi x\ copy T x copy U (F x).

We replace all the occurrences of T in U with a fresh variable x, yielding a meta‑
function F that represents the desired abstraction. One can then use this meta‑
functiondirectly or turn it into aproper COQ functionby adding abinder on top.

Customisationof COQ terms Another crucial feature in COQ‑ELPı is that it allows
developers to define new types and add constants with the type of their choice.
It is therefore possible to emulate the behaviour of algebraic types found inmore
traditional functional languages, by declaring a new type and various constants
to represent its constructors. Here is an example of definition of natural numbers
in ELPı:

kind nat type.
type zero nat.
type succ nat nat.

As thesevaluesarenotproperalgebraic types, thesetof constructors isnot closed
and thedeveloperor user of anELPı codebase canverywell addnewconstructors
to a type defined inside it. For instance, the COQ‑ELPı API for COQ term manipu‑
lation exposes an extensible representation of terms, which is excellent news for
meta‑programming. Indeed, it is possible to create new nodes in the AST of COQ
terms to represent various useful pieces of information when handling terms at

12 Software architecture of a preprocessing plugin 107

the meta level. This technique is used in TRAKT, where two new constructors are
added, for the purpose of annotating COQ terms:

type prod2 name term term (term term) term.
type cast term term.

The prod2 constructor is similar to the original prod constructor used to repre‑
sent dependent products, the difference being that it contains an additional ar‑
gument of type term. Thanks to this argument, it is possible to make a depen‑
dent product containing information about the domain before and after transla‑
tion. This piece of information can be used to find out if the type of a bound vari‑
able has changed during translation, so that the proof can be adapted accord‑
ingly. The cast constructor is used to distinguish embedding functions added
by the translation algorithm from any embedding functions that might already
be present in the initial goal before translation. In both cases, a clean‑up pro‑
cedure must be executed after this information has been used, so that the term
returned to COQ can be translated again in the proof assistant’s native syntax. In
fact, in order to make COQ terms available in the meta‑language, the ELPı type
used to represent them is in bijection with the native type in COQ, so the addi‑
tion of these new constructors prevents COQ‑ELPı from switching between both
representations. In the case of TRAKT, this clean‑up procedure is straightforward,
since the only thing to do is to delete cast annotations, leaving the underlying
term instead, and forget one of the two domains in the prod2 nodes, replacing
themwith prod nodes, in order to recover a well‑formed COQ term.

Reification of proofs A useful meta‑programming pattern identified during the
implementation of TRAKT is the reification of proofs, i.e., the design of an alge‑
braic type in the meta‑language to represent proofs. This gives a higher level
of abstraction than handling the raw COQ terms representing the various proof
steps to perform in order to rewrite the initial goal into the associated goal. In
addition, the use of these reified proofs helps to understand the proof fragments
built by the meta‑program during the translation, and allows externalising the
generation of the final COQ proof term into another predicate than themain one,
thus improving readability in the code of the plugin. For instance, proofs within
TRAKT are first generated in an ELPı type proof whose constructors represent the
various possible proof steps during the translation, then they go through a func‑
tion that reconstructs the corresponding COQ proof fragments before returning
the final term to the proof assistant.

Traversing the termandmaintaining the context Despite all the positive points
identified, TRAKT suffers fromsomeheaviness, in particular in itsmain translation
predicate. Indeed, as explained in § 6.2, the translation must distinguish covari‑
ant positions from contravariant positions, preprocess terms differently depend‑
ing on whether their type is embeddable or not, and keep the context of the cur‑
rent term in memory in order to generate rewriting proofs applying to the whole
logical atom, for proof composition. For all these reasons, the predicate has ad‑
ditional parameters to knowwhich case of the translation to apply to the current
node. Each new feature added is a list of new special cases to deal with, which
addsmorearguments and tests to thepredicate.6 In addition, there is ahighnum‑ 6: Here, the problem is not particularly due

to the meta‑language, but rather to the ad
hoc design approach of the plugin, targeting
short‑term utility for COQ users.

ber of case analyses that are sometimes deep, which makes them difficult to ex‑
press just by adding instances to the predicate. They are therefore implemented
with conditional branches, which are not a native construction in ELPı. Branches
are made via an explicit test predicate if, which slightly hinders readability.

12 Software architecture of a preprocessing plugin 108

TRAKT isa success inpractice, but its implementation reflects itsbottom‑upmodel,
centred first and foremost on a concrete problem to solve, with some abstraction
giving the plugin its extensibility and flexibility, detailed in § 6. The few limita‑
tions mentioned are some of the reasons that led us to think about a more gen‑
eral solution, a top‑down design from theory to practice. Parametricity plugins
developed in the 2010s hold the promise of gathering all the cases of translation
into a general framework, with an implementation that is admittedly more dif‑
ficult but also more elegant. TROCQ pushes this approach towards unifying the
various parametricity translations themselves, bringing certain subtleties to the
implementation, that are presented in the next chapter.

Implementation of a
parametricity plugin 13

13.1 Generating and inhabiting
the parametricity hierarchy 110

13.1.1Generation of the hierarchy
and plugin set‑up 110

13.1.2Flexibility of parametricity
witnesses 112

13.2 Implementation of the
parametricity relation . . . 113

13.2.1From inference rules to a
logical program 113

13.2.2Useful COQ‑ELPı features . . 115
13.3 Parametricity class infer‑

ence 116
13.3.1Problem definition 117
13.3.2Solution chosen in TROCQ . 119
13.3.3Implementation 120
13.3.4Weakening and subtyping . 122
13.4 Universe polymorphism . . 122
13.4.1Clearing typical ambiguity . 123
13.4.2Algebraic universes and

bound universes 124

The second prototype designed during this thesis, TROCQ, aims to solve the same
preprocessing problem as TRAKT presented earlier, while being able to translate
any𝐶𝐶𝜔 term. TROCQ is in particular a refinement of the univalent parametricity
translation, dispensing with the univalence axiom wherever a manual process‑
ing would not use it. This refinement involves the design of a hierarchy of Σ‑
types representing types of more or less rich parametricity witnesses, ranging
from the raw parametricity witness to the univalent witness. The levels of wit‑
nesses, called parametricity classes, are then constrained during the traversal of
the goal to allow only the witnesses that are rich enough to build the preprocess‑
ing proof of the initial goal. The final classes are set after this traversal in a sep‑
arate procedure, in order to obtain a unique translation. Constraints added dur‑
ing the process require a syntactic way to represent and manipulate parametric‑
ity classes, so we use an annotated type theory where all universes come with a
parametricity class. Finally, in a real‑world context, the translation works from
a knowledge base containing user‑proven parametricity witnesses on different
constants that may appear in the goals to be translated.

constraint graphinitial goal

annotated goal

annotation

associated goal
<latexit sha1_base64="Msx2GYThILKCD1UUQ/Ieivi3L8c=">AAAD5XicjVLLbtNAFL2peZTwSmHJZkRU0Ypg2UmTmF0Fi7BBCqVpK9Ulsp1psOoXfoAiy5/ACsSW72ALX8EfwF9w5tapyqKFGY1959x7ztx7Z9wk8LPcMH42VrQrV69dX73RvHnr9p27rbV7e1lcpJ6ceHEQpweuk8nAj+Qk9/NAHiSpdEI3kPvuyXPl338v08yPo918kcij0JlH/rHvOTmgaevJ+ujNY7tjZ344LTeMjrlZ2aIcPaoYdaXnFJm0xWi608SattqGbvWeds2BMPShZcCEMRgafcsSpm7waFM9xvFaY0w2zSgmjwoKSVJEOeyAHMowD8kkgxJgR1QCS2H57JdUURPcAlESEQ7QE3zn2B3WaIS90syY7eGUACsFU9A6ODHiUtjqNMH+gpUVepF2yZoqtwX+bq0VAs3pLdB/8ZaR/8tTteR0TBbX4KOmhBFVnVerFNwVlbk4V1UOhQSYsmfwp7A9Zi77LJiTce2qtw77f3GkQtXeq2ML+n1pdRliQlZZYM0uuZ2SXkLxdd0/dSenVYizboiz7iqvymQDPB1snTrsfQdlH/s5/AvONMWM6QN8mzi5ya9Kom+qY/Lc3ZeIl7ADjq6w36ERPWOrS33q4QQT3d7Cv0dDqvCmlw9XXGzsdXVzoPdfbbW3d+vXvUoP6CEyN6GyTS9oTBPk8Ym+0Xf6oc21j9pn7ctp6Eqj5tynv4b29Q9XP8rG</latexit>

GR preprocessing proof

<latexit sha1_base64="8VRAXpjTkIWH+zFbn0WniukJXzA=">AAAD4nicjVLLbtNQEJ3UPEp4NKVLNldEiJZGlp00D3YVLMIGKZSmrVS3ke3cBqt+4UdRZPkHWIHY8h1s4Tf4A/gLzp06VVm0cC3bM2fmnDsz9zqx76WZYfysLWk3bt66vXynfvfe/QcrjdWHe2mUJ64cu5EfJQeOnUrfC+U48zJfHsSJtAPHl/vO6UsV3z+TSepF4W42j+VRYM9C78Rz7QzQpPFseLxptazUCybFutEyN0pLFMOnJaOOdO08lZYYTnaONyeNpqEPOs/bZk8Yen9gwITR6xvdwUCYusGrSdUaRau1EVk0pYhcyikgSSFlsH2yKcVzSCYZFAM7ogJYAsvjuKSS6uDmyJLIsIGe4juDd1ihIXylmTLbxS4+3gRMQU/AiZCXwFa7CY7nrKzQq7QL1lS1zfF3Kq0AaEbvgP6Lt8j8X57qJaMTGnAPHnqKGVHduZVKzlNRlYtLXWVQiIEpe4p4Attl5mLOgjkp965ma3P8F2cqVPlulZvT72u7S5ETsMoc7/Sa0ynoNRTfVvNTZ3LehbiYhriYroqqStbB08HWqcXR91D24M8Qn3OlCZ6IPiC2gZ3rfKsk5qYmJi+dfYF8Cdvn7BL+Dg3pBVtt6lIHO5iY9hb+HepTiTu9uLjiamOvrZs9vftmq7m9W93uZXpEj1G5CZVtekUjGqOOT/SNvtMPbap91D5rX85Tl2oVZ43+WtrXP7PDygo=</latexit>

G+ ∼(0,1) G′+ ∵ G+R

<latexit sha1_base64="p42YTDSn2DXyTIiTaVqooCkkFq0=">AAAD5XicjVLLbtNQEJ3UPEp4pWXJ5oqoolWDZSfNg10FC7NBCqVpKzVtZDu3wapf+FEUWf4EViC2fAdb+Ar+AP6Cc6dOVRYtXMv2zJk5587MvU7se2lmGD9rS9qNm7duL9+p3713/8HDxsrqXhrliStHbuRHyYFjp9L3QjnKvMyXB3Ei7cDx5b5z+lLF989kknpRuJvNY3kU2LPQO/FcOwM0aTxbs443x61x6gWTYt1omRvlWBTW05JRR7p2nsqxsCY7x5t1a9JoGvqg87xt9oSh9wcGTBi9vtEdDISpG7yaVK1htFIb0pimFJFLOQUkKaQMtk82pXgOySSDYmBHVABLYHkcl1RSHdwcWRIZNtBTfGfwDis0hK80U2a72MXHm4ApaA2cCHkJbLWb4HjOygq9SrtgTVXbHH+n0gqAZvQO6L94i8z/5aleMjqhAffgoaeYEdWdW6nkPBVVubjUVQaFGJiyp4gnsF1mLuYsmJNy72q2Nsd/caZCle9WuTn9vra7FDkBq8zxTq85nYJeQ/FtNT91JuddiItpiIvpqqiqZB08HWydWhx9D2UP/gzxOVea4InoA2Ib2LnOt0pibmpi8tLZF8iXsH3OLuHvkEUv2GpTlzrYwcS0t/DvUJ9K3OnFxRVXG3tt3ezp3Tdbze3d6nYv02N6gspNqGzTKxrSCHV8om/0nX5oM+2j9ln7cp66VKs4j+ivpX39A9Knyp4=</latexit>

G

<latexit sha1_base64="xzu568LaJTu9oDys6cqaAG2Uvs8=">AAAD5nicjVLLbtNQEJ3UPEp4NIUlmyuiqq0aWXbSJGZXwSJskEJp2kp1G9nObWrVjo0foMjyL7ACseU72MJP8AfwF5w7daqyaOFatmfOzDl3Zu5148BPM8P4WVvSbt2+c3f5Xv3+g4ePVhqrj/fTKE88OfKiIEoOXSeVgT+To8zPAnkYJ9IJ3UAeuOcvVfzgvUxSP5rtZfNYHofOdOaf+p6TARo39LXByZbdslM/HBcbRsvcLG1RDNZLRl3pOXkqbTEY755s1Qfr40bT0K3O87bZE4betwyYMHp9o2tZwtQNXk2q1jBarQ3JpglF5FFOIUmaUQY7IIdSPEdkkkExsGMqgCWwfI5LKqkObo4siQwH6Dm+U3hHFTqDrzRTZnvYJcCbgCloDZwIeQlstZvgeM7KCr1Ou2BNVdscf7fSCoFmdAb0X7xF5v/yVC8ZnZLFPfjoKWZEdedVKjlPRVUurnSVQSEGpuwJ4glsj5mLOQvmpNy7mq3D8V+cqVDle1VuTr9v7C5FTsgqc7yTG06noNdQfFvNT53JRRfichricroqqirZAE8HW6cWR99B2Yc/RXzOlSZ4IvqA2CZ2rvOtkpibmpi8cvYF8iXsgLNL+Ls0oBdstalLHexgYtrb+HeoTyXu9OLiiuuN/bZu9vTum+3mzl51u5fpKT1D5SZUdugVDWmEOj7RN/pOP7Qz7aP2WftykbpUqzhP6K+lff0DiVHKzw==</latexit>

G′

<latexit sha1_base64="u/mx/VO4HlzdQ6gTGqWy6ckxsI4=">AAAD53icjVLLbtNQEJ3UPEp4pWXJ5oqoolUjYyfNg10Fi7BBCqVpKzVtZDu34ap+1Q9QZOUbWIHY8h1s4SP4A/gLzp06VVm0cC3bM2fmnDsz97qxr9LMsn5WlowbN2/dXr5TvXvv/oOHtZXVvTTKE08OvciPkgPXSaWvQjnMVObLgziRTuD6ct89fanj++9lkqoo3M1msTwKnGmoTpTnZIDGtWdr/ePNUWOUqmBcrFsNe2M+EkX/6ZxRV3pOnsqR6I93jjerSB3X6pbZaz1v2h1hmd2eBRNGp2u1ez1hmxavOpVrEK1UBjSiCUXkUU4BSQopg+2TQymeQ7LJohjYERXAEliK45LmVAU3R5ZEhgP0FN8pvMMSDeFrzZTZHnbx8SZgCloDJ0JeAlvvJjies7JGr9IuWFPXNsPfLbUCoBm9A/ov3iLzf3m6l4xOqMc9KPQUM6K780qVnKeiKxeXusqgEAPT9gTxBLbHzMWcBXNS7l3P1uH4L87UqPa9Mjen39d2lyInYJUZ3sk1p1PQayi+Leenz+S8C3ExDXExXR3VlayDZ4JtUoOjZ1BW8KeIz7jSBE9EHxDbwM5VvlUSc9MTk5fOvkC+hO1z9hz+DvXpBVtNalMLO9iY9hb+LerSHHd6cXHF1cZe07Q7ZvvNVn17t7zdy/SYnqByGyrb9IoGNEQdn+gbfacfhjI+Gp+NL+epS5WS84j+WsbXPwSLyzs=</latexit>

G+
<latexit sha1_base64="9jxbRASLrl4ZCRLZvL6zLfri734=">AAAD8XicjVJNb9NAEJ3UfJTw0RSOXFZEFa0aWXbSfPRW0UO4IIXStJXqNrKdbbBqx8ZrgyIrP4QTiCu/gyuc+QfwL3g7dapyaGEt2zNv5r2dmV0vCQOVWdbPypJx6/adu8v3qvcfPHy0Ult9fKDiPPXl0I/DOD3yXCXDYCqHWZCF8ihJpRt5oTz0znd1/PC9TFUQT/ezWSJPIncyDc4C380AjWrba/3TTafhqCAaFetWw96YO6LoP58z6knfzZV0RH+0d7pZ3d0dFU4cyYmL8KhWt8xea7tpd4RldnsWTBidrtXu9YRtWrzqVK5BvFoZkENjismnnCKSNKUMdkguKTzHZJNFCbATKoClsAKOS5pTFdwcWRIZLtBzfCfwjkt0Cl9rKmb72CXEm4IpaA2cGHkpbL2b4HjOyhq9TrtgTV3bDH+v1IqAZvQW6L94i8z/5eleMjqjHvcQoKeEEd2dX6rkPBVdubjSVQaFBJi2x4insH1mLuYsmKO4dz1bl+O/OFOj2vfL3Jx+39idQk7EKjO84xtOp6BXUHxTzk+fyUUX4nIa4nK6OqorWQfPBNukBkffQTmAP0F8xpWmeGL6gNgGdq7yrZKYm56YvHL2BfIl7JCz5/D3qE8v2GpSm1rYwca0t/BvUZfmuNOLiyuuNw6apt0x26+36jv75e1epqf0DJXbUNmhlzSgIer4RN/oO/0wlPHR+Gx8uUhdqpScJ/TXMr7+AWvOz5o=</latexit>

CC+!

knowledge base

traversal

erasing
<latexit sha1_base64="9jxbRASLrl4ZCRLZvL6zLfri734=">AAAD8XicjVJNb9NAEJ3UfJTw0RSOXFZEFa0aWXbSfPRW0UO4IIXStJXqNrKdbbBqx8ZrgyIrP4QTiCu/gyuc+QfwL3g7dapyaGEt2zNv5r2dmV0vCQOVWdbPypJx6/adu8v3qvcfPHy0Ult9fKDiPPXl0I/DOD3yXCXDYCqHWZCF8ihJpRt5oTz0znd1/PC9TFUQT/ezWSJPIncyDc4C380AjWrba/3TTafhqCAaFetWw96YO6LoP58z6knfzZV0RH+0d7pZ3d0dFU4cyYmL8KhWt8xea7tpd4RldnsWTBidrtXu9YRtWrzqVK5BvFoZkENjismnnCKSNKUMdkguKTzHZJNFCbATKoClsAKOS5pTFdwcWRIZLtBzfCfwjkt0Cl9rKmb72CXEm4IpaA2cGHkpbL2b4HjOyhq9TrtgTV3bDH+v1IqAZvQW6L94i8z/5eleMjqjHvcQoKeEEd2dX6rkPBVdubjSVQaFBJi2x4insH1mLuYsmKO4dz1bl+O/OFOj2vfL3Jx+39idQk7EKjO84xtOp6BXUHxTzk+fyUUX4nIa4nK6OqorWQfPBNukBkffQTmAP0F8xpWmeGL6gNgGdq7yrZKYm56YvHL2BfIl7JCz5/D3qE8v2GpSm1rYwca0t/BvUZfmuNOLiyuuNw6apt0x26+36jv75e1epqf0DJXbUNmhlzSgIer4RN/oO/0wlPHR+Gx8uUhdqpScJ/TXMr7+AWvOz5o=</latexit>

CC+!

graph
reduction

Figure 13.1:Mode of operation of TROCQ

Thus, themode of operation of the implementation of TROCQ can be summarised
by Figure 13.1. First, the initial goal 𝐺 is annotated by adding fresh variables
on all universes, i.e., variable parametricity classes that are still unconstrained,
yielding a goal 𝐺+ that will be the input goal to traverse. This traversal applies
structural rules and generates a new goal 𝐺′+ as well as a parametricity witness
𝐺+

𝑅 relating the two goals at level (0, 1), the smallest level subsequently allow‑
ing extraction of a proof of 𝐺′+ → 𝐺+ from the witness. The traversal adds
various constraints on the parametricity classes, that are represented with a con‑
straint graph. After the traversal, the graph is reduced and the final parametricity
classes are set. The assignment of parametricity class variables triggers queries
in the knowledge base to retrieve any required user‑provided witnesses, at the
right level for the overall proof to be well typed. Finally, once all the terms are

13 Implementation of a parametricity plugin 110

complete, erasure is performed to recover an associated goal 𝐺′ and a prepro‑
cessing proof to extract from 𝐺𝑅, as two valid COQ terms.

This chapter raises various points of technical interest in the implementation of
TROCQ. First, we look at the generation of the parametricity hierarchy, the frame‑
work on which everything else in the plugin is based (§ 13.1). Next, we explain
how COQ‑ELPı’s paradigm brings the implementation of this framework closer to
its relational description (§ 13.2), and then describe the implementation of para‑
metricity class inference (§ 13.3). Finally, we identify the limitationsof the current
implementation of universe polymorphism in COQ, a crucial feature in the imple‑
mentation of TROCQ (§ 13.4).

13.1 Generating and inhabiting the parametricity
hierarchy

In the implementation of TROCQ, we use meta‑programming to write the goal
traversal procedure, but also to set up the plugin beforehand, to automate away
the combinatorial complexity introduced by the parametricity hierarchy. There
exist 6 levels in the hierarchy and a parametricity class is a combination of a co‑
variant level and a contravariant level. Therefore, there are in total 36 possible
parametricity classes, and consequently as many variants for each definition in‑
dexed by a class: parametricity witness types, parametricity lemmas, weakening
functions, etc. This multiplicity is such that it would be unreasonable to write
all the definitions manually. The symmetrical formulation of parametricity wit‑
nesses reduces this manual effort to 6 variants, one for each level of the hierar‑
chy. The remaining terms can then be generated by combining the 6 base vari‑
ants. In this section, we show how this generation using COQ‑ELPı helps both the
developer when setting up the plugin and the user by handily manipulating the
parametricity witnesses they added to the knowledge base.

13.1.1 Generation of the hierarchy andplugin set-up

The theoretical presentation of TROCQ defines a hierarchy of parametricity wit‑
ness types to relate two types 𝐴 and 𝐵, ranging from the raw parametricity wit‑
ness type 𝐴 → 𝐵 → □ to the univalent witness type Param⊤ 𝐴 𝐵 from Theo‑
rem9.1.6. The implementationmustdefineawitness type foreverypossible level
in the hierarchy and define as many versions of the parametricity lemmas.

Parametricitywitness types Parametricity witness types Param(𝛼,𝛽), fromDef‑
inition 9.1.7, are indexed by a parametricity class (𝛼, 𝛽) and defined as the com‑
bination of a relation with two unilateral witnesses M𝛼 𝑅 and M𝛽 𝑅−1, each
one concerning one direction of relation 𝑅.

InCOQ, dependentpairs canbe represented inanequivalentwaywith records. In‑
deed, records ease themanipulation of structures because they are flat1 and it is 1: All terms at the same level in the structure

can be obtained with the same number of
projections.

possible tonametheprojectionsapplied to them.2 The implementationof TROCQ

2: They are the fields of the record.
thereforeuses the following recordasaconcrete representationof Param(𝛼,𝛽) :

Record Param(𝛼,𝛽)@{i} (A B : Type@{i}) = {
R : A B Type@{i};
covariant : Map𝛼 R;

13 Implementation of a parametricity plugin 111

contravariant : Map𝛽 (sym_rel R)
}.

In this family of records, the implementation of the M unilateral witness types is
faithful to the theoretical description, by simply reformulating dependent pairs
as records and naming the fields. Thus, the M4 unilateral univalentwitness type
is implemented by the following record:

Record Map4@{i} {A B : Type@{i}} (R : A B Type@{i}) = {
map : A B;
map_in_R : forall (a : A) (b : B), map a = b R a b;
R_in_map : forall (a : A) (b : B), R a b map a = b;
R_in_mapK : forall (a : A) (b : B) (r : R a b),

(map_in_R a b (R_in_map a b r)) = r
}.

The map function is indeed a map from A to B; the field map_in_R describes the
property for the graph of this map to be included in the relation R; the opposite
property, i.e., that relation R is included in the graph of map, is described by the
field R_in_map ; finally, the field R_in_mapK indicates that both previous fields
cancel each other out.3 To obtain the remaining unilateral witness types, it suf‑ 3: The naming is inspired by the MATHCOMP

library, where a cancellation property is
named with a suffix K for “cancel”.

fices to remove fields from this record. For example, the record type without the
last field corresponds to unilateral witness type M3 and an empty record type
corresponds to M0. The association of a unilateral witness at level 𝛼 on a re‑
lation R and a unilateral witness at level 𝛽 on the inverse relation sym_rel R
actually corresponds to a parametricity witness Param(𝛼,𝛽).

All these records can be generated with a COQ‑ELPı command, by writing a predi‑
cate taking as a parameter the required parametricity class for the witness. This
predicate then opens a module as a namespace dedicated to this parametric‑
ity class and defines the record. Here’s how to make such a definition in COQ‑
ELPı:4 4: For readability, we do not mention uni‑

verses at this point.
1 coq.env.begin-module "Param43" none,
2 RelDecl =
3 parameter "A" _ {{ Type }} (a\
4 parameter "B" _ {{ Type }} (b\
5 record "Rel" {{ Type }} "BuildRel" (
6 field [] "R" {{ lp:a lp:b Type }} (r\
7 field [] "covariant" {{ Map4.Has lp:r }} (_\
8 field [] "contravariant" {{ Map3.Has (sym_rel lp:r) }} (_\
9 end-record)))))),

10 coq.env.add-indt RelDecl _,
11 coq.env.end-module _.

Values parameter, record, field, and end-record are constructors of a COQ‑ELPı
type used to represent COQ definitions of inductive types. The coq.env.* API
contains all the functions to interact with the COQ environment, and in particular
to make new definitions.

Parametricity lemmas Among all the possible cases in the parametricity trans‑
lation in TROCQ, some are only a matter of 𝜆‑calculus — such as application or
abstraction — and building the witness essentially consists in using a combina‑
tor to join the results of recursive calls; other cases require proofs defined inde‑
pendently of the goal traversal procedure. In the case of the universe and the de‑
pendent product, these are proofs 𝑝□ and 𝑝Π, whichwe coinedasparametricity

13 Implementation of a parametricity plugin 112

lemmas. These lemmas are represented in COQ by a family of terms with the fol‑
lowing types:5 5: In the case of the dependent product, the

retained parametricity classes are

(𝛼, 𝛽) = 𝒟Π(𝛾)
Definition Param𝛾

□ : Param𝛾 Type Type.

Definition Param𝛾
Π

(A A' : Type) (A R : Param𝛼 A A')
(B : A Type) (B' : A' Type)
(B R : forall a a' a R , Param𝛽 (B a) (B' a')) :
Param𝛾 (forall (a : A), B a) (forall (a' : A'), B' a').

These definitions are done in the same way as for the records, first making the
proofsmanually for the 6 levels of the hierarchy, yielding 6 unilateralwitnesses to
be combined together to obtain the final proofs. A case analysis is performed on
parametricity class 𝛾 to determinewhether the principle of univalence— for the
universe — or function extensionality — for the dependent product — is needed
to carry out the proof. The difference with parametricity witness types is that
the definitions here concern constants and not inductive types. The content of a
definition is therefore a COQ term in the encoding of COQ‑ELPı, and the predicate
used to make the definition is coq.env.add-const.

13.1.2 Flexibility of parametricitywitnesses

In order to implement the parametricity relation in TROCQ, it is necessary not only
to define all possible parametricity witness types, but also to ensure a certain de‑
gree of compatibility between these types and flexibility in their use. For both the
developer and the user, the content of parametricity witnessesmust be transpar‑
ent, and the hierarchymust not involve heaviness either in the code or in the user
declarations. For example, it must be easy to extract a piece of information from
a record that has a sufficient class to contain it, and it must be possible to accept
a witness supplied by the user wherever a weaker witness is expected.

Parametricity witnesses in TROCQ can be weakened using a function described
in Figure 10.6. This weakening occurs when the available witness is richer than
the expectedwitness type, so that the overall parametricity witness remainswell
typed. This allows the user to declare only one parametricity witness to relate
two constants, at the highest parametricity class for which the proof is possible.
Thus, wherever a witness is required on these constants at a level reachable by
weakening from the level of the providedwitness, a weakening function is added
automatically by the plugin.

A weakening function can be defined between a source annotated type and a tar‑
get annotated type if the latter is a subtype of the former. In the base case where
thewitness is a record, theweakening corresponds to forgetting fields and recom‑
posing the remaining fields in a new weaker record. The various weakenings are
generated frommanually definedatomic forgetful functions, deleting thehighest
level field in a unilateral parametricitywitness. For example, here are the types of
the forgetful function from level 3 to level 2a and of the forgetful function from
class (4, 3) to class (4, 2a) generated with COQ‑ELPı from the former:

Definition forgetMap3
2a

{A B : Type} {R : A B Type} :
Map3 R Map2a

R.

Definition forget(4,3)
(4,2a) {A B : Type} :

Param(4,3) A B Param(4,2a) A B.

13 Implementation of a parametricity plugin 113

Projections In the previous definition of the Map4 record, the fields have been
named to make data extraction more readable. However, these fields are those
of a unilateral record that is then included in another record, and each record ex‑
ists in a separate namespace. In this state, extracting a field is syntactically cum‑
bersome and dependent on the parametricity class of the witness. However, the
forgetful functions can be declared as coercions, allowing COQ’s typechecker to
forget an arbitrary number of fields and thus check that a cookie is sufficiently
rich. Thanks to this, a projection function is defined once for each field, and this
function can be applied to all parametricity witnesses containing this field while
preserving typing. For example, here is the projection on field map_in_R corre‑
sponding to level 2a in the hierarchy:

Definition map_in_R {A B : Type} :
Param(2a,0) A B forall (a : A) (b : B), map R a = b R a b.

This projection actually concerns the left‑to‑right unilateral witness, since it ap‑
plies to a witness of class (2a, 0), but this method also allows the fields of the
right‑to‑leftunilateralwitness tobenameddifferently. Thus, TROCQalso contains
definitions for symmetrical projections. The symmetrical projection of map_in_R
is named comap_in_R and has the following type:6 6: Value comap is the symmetrical field of

map and has type A B.
Definition comap_in_R {A B : Type} :
Param(0,2a) A B forall (b : B) (a : A), comap R b = a R a b.

13.2 Implementation of the parametricity relation

The parametricity framework of TROCQ was designed with the aim of being im‑
plemented in COQ. Its relational presentation, detailed in Figure 10.5, is heavier
than the traditional presentationof parametricity translations, buthas theadvan‑
tage of making explicit details that are important at the time of implementation,
namely the steps of manipulation of bound variables as well as the origin of the
termspresent in the conclusion of the inference rules. To implement TROCQ, COQ‑
ELPı is anatural choice, its logicparadigmbeingentirely in linewith this relational
presentation. These various design and implementation choices have resulted
in a high degree of similarity between the theoretical presentation of TROCQ and
the code of the relation. This section highlights this readability in the implemen‑
tation of TROCQ.

13.2.1 From inference rules to a logical program

First of all, we can see that the deductive presentation of an algorithm fits in very
well with logic programming. Indeed, the algorithm can be implemented with
an ELPı predicate, where each case of the algorithm corresponds to an instance
of the predicate, and for each case, the head of the instance corresponds to the
conclusion and the body of the instance corresponds to the premises. So, just
as we would construct a tree on paper by stacking various rules of the algorithm,
starting with the conclusion to be obtained at the root of the tree, the COQ‑ELPı
implementation consists of a call to the parametricity predicate, with each recur‑
sive call representing a new rule to add to a branch of the tree.

However, the theoreticalpresentationkeepsacertain levelof abstraction through
the presence of the TROCQCONV rule. This rule concentrates all the flexibility of
parametricity inTROCQ, in the fact that it canbeaddedanywhere in thederivation

13 Implementation of a parametricity plugin 114

tree tomake valid a parametricitywitness stronger thannecessary. Although this
elegant rule avoids adding weakenings to all the other rules, it makes the goal
traversal procedure non‑deterministic because there are two possible rules for
each construct of the language. It is up to the implementation to choosewhen to
use this TROCQCONV rule. Moving from inference rules to the logical program in‑
volvesmaking the goal traversal algorithmdeterministic, followedby associating
each element7 appearing in the ruleswith a corresponding atomic code fragment 7: Values, operations, kinds of premises, etc.
in COQ‑ELPı.

Making the algorithmdeterministic In TROCQ, the implementation of the para‑
metricity relation systematically uses the TROCQCONVweakening rule in the base
cases, i.e., on variables and constants. These are cases in which a premisemight
not be provable in the absence of weakening. In the case of variables — the rule
TROCQVAR —, the premise directly checks the parametricity context Ξ to find an
associated witness. However, this witness does not necessarily have an anno‑
tated type identical to the one at which the variable is processed. In the case
where the type of the variable contains parametricity classes, theweakening rule
is even a crucial tool to constrain these classes during traversal of the goal. The
case of constants is analogous: the knowledge base contains a finite number of
possible associations for the same constant, with annotated types representing
precisely the dependencies needed to create the parametricity witnesses, and a
constant is not always processed exactly at one of these types. Weakening allows
using a potentially richer witness declared in the database if the annotated type
desired during the goal traversal does not exactly exist in the database. Using
weakening in the other cases of thepredicate can lead to computing a richer para‑
metricity witness than necessary, which is contrary to the objective of TROCQ.

Another non‑deterministic element is visible in the case of the application— rule
TROCQAPP—, the only case containing a termwhose origin is not set: the domain
𝐴 of the function at the head of the application. Rather than creating a fresh
variable at this point and potentially causing an unnecessary weakening in the
recursive call on 𝑓 , the implementation retrieves the type of 𝑓 from the context
to read the right value for 𝐴. In this way, the potential weakening operation car‑
ried out when processing 𝑓 concerns type 𝐵.

Correspondence between rules and code To study the link between rules and
code, let us startwith thecaseofboundvariables, using theTROCQVARandTROCQ‑
CONV rules. Here is the combination of these two rules implemented in TROCQ:

(𝑥, 𝑇 , 𝑥′, 𝑥𝑅) ∈ Δ 𝛾(Δ) ⊢+ 𝑇 ≼ 𝑇 ′

Δ ⊢𝑡 𝑥 @ 𝑇 ′ ∼ 𝑥′ ∵ ⇓𝑇
𝑇 ′ 𝑥𝑅

Now here is the corresponding instance of the predicate for the parametricity re‑
lation in TROCQ:8 8: In the next few blocks of code, the display

predicates have been removed as they are
not useful in the presentation and do not de‑
tract from our argument.

1 param X T' X' (W XR) :- name X, !,
2 param.store X T X' XR,
3 annot.sub-type T T',
4 weakening T T' (wfun W).

The param predicate with four arguments is the main parametricity predicate.
Theheadof the instance corresponds to the conclusionof the rule, where W is the
weakening function generated in line 4. The name X condition is used to check
that X is indeed a variable and to make this instance fail on all the other terms,

13 Implementation of a parametricity plugin 115

in order to execute the instance dedicated to them instead. Lines 2 and 3 are the
premises. Predicate param.store is used to represent the Δ parametricity con‑
text. It therefore appears that the association between the inference rules and
the predicate instance is fairly transparent.

Let us now look at a more complex case, that of the arrow type, which involves
constraints betweenparametricity classes aswell as recursive calls to param :9 9: The inference rule is a deliberately reor‑

ganised version of the TROCQARROW rule, in
which some parametricity classes are explic‑
itly named and universe constraints do not
appear. Indeed, as they are delegated to COQ,
they do not appear in the code and can be ig‑
nored here.

𝐶 = (𝑀, 𝑁) (𝐶𝐴, 𝐶𝐵) = 𝒟→(𝐶)
𝐶𝐴 = (𝑀𝐴, 𝑁𝐴) Δ ⊢𝑡 𝐴 @□(𝑀𝐴,𝑁𝐴) ∼ 𝐴′ ∵ 𝐴𝑅
𝐶𝐵 = (𝑀𝐵, 𝑁𝐵) Δ ⊢𝑡 𝐵 @□(𝑀𝐵,𝑁𝐵) ∼ 𝐵′ ∵ 𝐵𝑅

Δ ⊢𝑡 𝐴 → 𝐵 @□(𝑀,𝑁) ∼ 𝐴′ → 𝐵′ ∵ 𝑝𝐶
→ 𝐴𝑅 𝐵𝑅

1 param
2 (prod _ A (_\ B)) (app [pglobal (const PType) _, M, N])
3 (prod `_` A' (_\ B')) (app [pglobal (const ParamArrow) UI|Args]) :-
4 param.db.ptype PType, !, std.do! [
5 cstr.univ-link C M N,
6 cstr.dep-arrow C CA CB,
7 cstr.univ-link CA MA NA,
8 param A (app [pglobal (const PType) _, MA, NA]) A' AR,
9 cstr.univ-link CB MB NB,

10 param B (app [pglobal (const PType) _, MB, NB]) B' BR,
11 param.db.param-arrow C ParamArrow,
12 prune UI [],
13 util.if-suspend C (param-class.requires-axiom C) (
14 coq.univ-instance UI0 [],
15 Args = [
16 pglobal (const {param.db.funext}) UI0, A, A', AR, B, B', BR
17]
18) (
19 Args = [A, A', AR, B, B', BR]
20)
21].

The six premises are represented by lines 5 to 10 in the code block, in the sameor‑
der as in the inference rule. The remaining code retrieves the 𝑝𝐶

→ proof present in
the conclusion (variable ParamArrow) and applies the right arguments to it, some
of which are implicit in the paper presentation.

13.2.2 Useful COQ-ELPI features

Asshowed in the inference rulesdescribing theparametricity translationof TROCQ
— Figure 10.5 —, it involves operations of different kinds: recursive calls, con‑
straints on parametricity classes, proof construction from parametricity lemmas
or witnesses added by the user. Making all these operations available requires
a certain amount of software infrastructure, however hidden in TROCQ’s imple‑
mentation behind the division of the code into several files and specific features
of COQ‑ELPı, such as goal suspension or Constraint Handling Rules [51] (CHR). [51]: FRÜHWıRTH (1994), “Constraint Han‑

dling Rules”
First, splitting the codemakes it easier to read. This is why, in the code of TROCQ,
all the constraint logic on parametricity classes goes through an API of cstr.*
predicates, so as not to expose this part of the implementation in the definition
of themain parametricity predicate, and thus remain as faithful as possible to the
inference rules.

13 Implementation of a parametricity plugin 116

Second, the use of COQ‑ELPı’s CHR allows maintaining a global state containing
the various parametricity class constraints throughout the goal traversal. This
has the advantage that thedata structure storing the constraints is invisible in the
param predicate,10 but also that no reified encoding of the parametricity classes 10: Because it is a global state, it is possible

to never name or mention it in the code.is necessary in the annotated terms. Indeed, a central feature in the use of CHR is
the reification of variables in the head of the rules. Unlike classic ELPı code mod‑
elled on PROLOG, where the notion of term comparison is based on unification, in
the context of CHR, the first phase in the execution of a rule, patternmatching, is
carried out at the meta level. At this level, two syntactically different variables in
the various arguments of suspended goals can therefore not be unified. Among
other things, this allows indexingdata structures on variables, and therefore leav‑
ing the parametricity class variables as they are in the annotated terms.11 11: Internally, they are still associated with

an integer, because thedata structure storing
the constraints requires the keys to be com‑
parable, which is a simpler task on integers
than on variables.

Third, goal suspension allows implementing the algorithm in the same way re‑
gardless of the status of the initial goal. Indeed, when annotating a goal before
traversal,many freshvariablesare created to representparametricity classes that
are still unknown. In the initial call to the param predicate, in general, the para‑
metricity class at which we wish to process the goal is known: we want class
(0, 1) in order to extract a function from the new goal to this initial goal. In the
code of the relation for arrow types, variables M and N are therefore ground,
which then determines C and the other variables in the program that depend
on it. However, as recursive calls are made, it is possible that some parametric‑
ity class variables remain undefined, not having a ground value before running a
subsequent procedure to determine parametricity classes.12 Yet, the code may 12: The associated problem, the solution

chosen and its implementation are the topic
of the next section.

have to compute results from such variables.13 ELPı’s goal suspension feature

13: For example, retrieving a value from a
database — line 11 in the latest code block —
or testing whether the level of a variable re‑
quires an axiom— line 13.

is therefore welcome in the implementation of TROCQ, since it allows blocking a
computation on a variable for as long as that variable is undefined, and then to
wake it up as soon as a ground parametricity class is assigned to the variable.

13.3 Parametricity class inference

A particularity of the parametricity relation in TROCQ is that it can relate a same
term to several valid associated terms. This is because the relation starts from a
term in 𝐶𝐶+

𝜔 containing universes annotated with parametricity classes. How‑
ever, in our case, the input term is obtained by an automatic annotation of the
initial goal that creates a fresh variable for eachparametricity class. Furthermore,
the rules of TROCQ do not explicitly constrain these classes to be equal to a partic‑
ular value, but simply to be above or below a value. Thus, the goal traversal does
not set the different parametricity classes found in the annotated types, but only
constrains them. At the end of the process, some parametricity classesmay then
have several valid solutions.

For example, when translating Π𝐴 ∶ □. 𝐴 → 𝐴 at level (0, 1), a parametric‑
ity witness of level (2a, 0) at least is required on subterm □. This means that
all entries of the relation for □ that are above this level are also acceptable, as
they contain at least the required amount of information. Similarly, processing
ℕ → ℕ at level (1, 0) will require twoparametricitywitnesses on ℕ, one at level
(0, 1) at least and the other at level (1, 0) at least. All witnesses of higher level
yield a well‑typed final proof.

However, it is important to determine a final value for these classes, as these val‑
ues have a potential impact on the amount of information requested from the
user, and even on the axioms required to perform preprocessing. In order to

13 Implementation of a parametricity plugin 117

avoid the use of axioms as much as possible and request as little information as
possible from the user, it seems worthwhile to try tominimise all the parametric‑
ity classes in the output witness. However, this minimisation problem does not
always have a solution, in particular when the goal contains user constants. The
implementationof TROCQuses aheuristic that inmany cases allowsa satisfactory
solution to be obtained.

In this section, we define the inference problem and illustrate it with an exam‑
ple. Next, we explore the various solutions considered and justify the technical
choices made in TROCQ. Finally, we give details on the implementation of weak‑
ening and subtyping, as these are key points for the parametricity class inference
to work correctly.

13.3.1 Problemdefinition

In order to illustrate the problemof parametricity class inference, let us look at an
example. We consider a processing of the following initial goal, freshly annotated
automatically by TROCQ:

Π𝐹 ∶ □𝛼 → □𝛽. Π𝐴 ∶ □𝛾. 𝐹 𝐴 → 𝐹 𝐴

It contains three fresh variables 𝛼, 𝛽, and 𝛾, one for each universe. The trace of
the traversal of this termmade by TROCQ is the following:

Processing of the initial goal at type □(0,1).
Application of TROCQPı.

– Processing of domain □𝛼 → □𝛽 at type □(2a,0).
Application of TROCQARROW.

• Processing of □𝛼 at type □(0,2b).
Application of TROCQSORT.
Addition of constraint (𝛼, (0, 2b)) ∈ 𝒟□ .

• Processing of □𝛽 at type □(2a,0).
Application of TROCQSORT.
Addition of constraint (𝛽, (2a, 0)) ∈ 𝒟□ .

– Processing of Π𝐴 ∶ □𝛾. 𝐹 𝐴 → 𝐹 𝐴 at type □(0,1).
Application of TROCQPı.

• Processing of □𝛾 at type □(2a,0).
Application of TROCQSORT.
Addition of constraint (𝛾, (2a, 0)) ∈ 𝒟□ .

• Processing of 𝐹 𝐴 → 𝐹 𝐴 at type □(0,1).
Application of TROCQARROW.

* Processing of 𝐹 𝐴 at type □(1,0).
Application of TROCQAPP taking □𝛼 as the domain of 𝐹 .

· Processing of 𝐹 at type □𝛼 → □(1,0).
Application of TROCQCONV then TROCQVAR.
Addition of constraint 𝛽 ≥ (1, 0) .

· Processing of 𝐴 at type □𝛼.
Application of TROCQCONV then TROCQVAR.
Addition of constraint 𝛾 ≥ 𝛼 .

* Processing of 𝐹 𝐴 at type □(0,1).
Application of TROCQAPP taking □𝛼 as the domain of 𝐹 .

13 Implementation of a parametricity plugin 118

· Processing of 𝐹 at type □𝛼 → □(0,1).
Application of TROCQCONV then TROCQVAR.
Addition of constraint 𝛽 ≥ (0, 1) .

· Processing of 𝐴 at type □𝛼.
Application of TROCQCONV then TROCQVAR.
Addition of constraint 𝛾 ≥ 𝛼 —duplicate.

We therefore get a set of constraints at the end of the traversal, describing sets of
admissible values for 𝛼, 𝛽, and 𝛾, as well as relations between these variables
that must always be respected, but no concrete value is defined. The problem
is therefore to find an admissible assignment for these variables, based on the
constraints present in the inference rules of TROCQ.

Univalent solution A solution to this problem always exists: it suffices to set all
classes to (4, 4), which corresponds to a univalent parametricity translation. Let
us explain why such a solution is always valid. First, the various possible con‑
straints in the traversal can always be reduced to order constraints between the
variables involved or equality to (4, 4). A constraint of the form (𝛼, 𝛽) ∈ 𝒟□
can be reduced when the value of 𝛽 is known, by distinguishing two cases: if 𝛽
belongs to {0, 1, 2a}2, then 𝛼 is not constrained; otherwise, 𝛼 = (4, 4). The
procedure setting all the classes to (4, 4) is therefore compatible with this con‑
straint: if we set 𝛽 to (4, 4), the constraint implied on 𝛼 is compatible since we
also set 𝛼 to (4, 4). A constraint of the form (𝛼, 𝛽) = 𝒟⋆(𝛾) where ⋆ ∈ {→, Π}
can be reduced to two order constraints when the value of 𝛾 is known. If we set
𝛾 to (4, 4), then the dependency tables in Figure 9.2 yield 𝛼 = 𝛽 = (4, 4), which
is compatible since we also set these classes to (4, 4). Finally, order constraints
between classes are never strict, so two classes 𝛼 and 𝛽 set at (4, 4) always sat‑
isfy an 𝛼 ≥ 𝛽 constraint. Consequently, the solution that can be described as
univalent, is always valid.

Search for a minimal solution However, the univalent solution is not satisfac‑
tory since it always requires the maximum amount of information from the user
and at least one axiom whenever a universe or dependent product is present in
the initial goal. Therefore, we look for another solution, with the opposite objec‑
tive: the less information we ask for in general, the more goals we can process
from a given user knowledge base, and the less likely we are to need an axiom. It
seems natural to try tominimise all parametricity classes. However, it is not sure
that such a solution can be built, or that it actually achieves the objective.

On theonehand, aminimisationorder for theparametricity classespresent in the
constraintsmust be determined. However, adding constraints during traversal is
not totally structural. Not all constraints on a node in the initial goal are deter‑
mined when the node is traversed. For example, any occurrence of a bound vari‑
ablemay induce the addition of a constraint on the parametricity classes present
in its type, even though this type has already been processed earlier, when the
binder introducing the bound variable was traversed. It is therefore not obvious
that minimising the variables in the order in which they are encountered is the
best solution. Furthermore, in the absence of a more detailed study of the be‑
haviour of constraints according to the structure of the goal, we cannot rule out
the possibility that, for some goals, minimising one class of parametricity may
impair the minimisation of another class of parametricity. In such a case, min‑
imising one class before the other would increase the second one, implying the

13 Implementation of a parametricity plugin 119

use of an axiom that could have been avoided by changing the minimisation or‑
der of the classes. This case seems more likely to occur in the presence of con‑
stants in the initial goal, since the valid assignments of the parametricity classes
in the type of a constant are specific to that constant and a priori do not respect
any property common to all constants. The minimisation order therefore seems
difficult to define in an analytical way.

On the other hand, still in the case of constants, minimisation may not be an op‑
timal solution. The dependency tables in Figure 9.2 suggest that the classes re‑
quired on the domain and codomain of a function type increase with the class
required on that type. However, although this is intuitive in the case of func‑
tional types, without further study it cannot be said that this property, that could
be described as monotonicity, generalises to all constants. In the case of a non‑
monotonic constant, it could be counter‑productive to attempt to minimise all
the classes. Consequently, even the action of trying to minimise all the para‑
metricity classes present in the constraints could be an imperfect heuristic.

13.3.2 Solution chosen in TROCQ

In the context of the implementation of TROCQ, we propose an empirical solution
whose optimality is not guaranteed in theory. In this solution, it is assumed that
the entire computation is monotonic, so minimising the parametricity classes is
a good heuristic. It is left to determine the minimisation order.

Complex constraints A key point about the minimisation order is that, when
minimising a particular parametricity class, in order to select the minimal pos‑
sible class, all the order constraints associated with that class must be known.
This is because the constraints added during traversal of the goal are either order
constraintsor complex constraints, involvingadependency table in the sameway
as in Figure 9.2. When the construct in question is a type constructor, it lives in
a universe equipped with a parametricity class that we will call an output class.
The dependency table then has one row per parametricity class, in which we can
read the various dependencies on the other parametricity classes linked to this
construct. Thesedependencies areobtainedby first determining theoutputpara‑
metricity class. Once we know these dependencies, we can replace the complex
constraint with a list of order constraints from each of the classes present in the
row of the table. For each complex constraint, we therefore know that the vari‑
able corresponding to the output classmust be instantiated before the others, in
order to reduce the complex constraint into one or more order constraints.

For example, the goal used to define the class inference problem in § 13.3.1 is
a dependent product. The TROCQPı rule is used to determine at which types we
shouldprocess thedomain □𝛼 → □𝛽 and the codomain Π𝐴 ∶ □𝛾. 𝐹 𝐴 → 𝐹 𝐴,
using a constraint (𝛼, 𝛽) = 𝒟Π(𝛾). The goal traversal starts with an annotated
type □(0,1), i.e., it sets the output class to (0, 1). We therefore have 𝛾 = (0, 1),
and it is only with this information that we can find the right row in the table of
Figure 9.2 allowing us to determine 𝛼 and 𝛽.

Order constraints In an order constraint, a variable can be in a higher or lower
position. To find the minimal class for a variable, we consider all the order con‑
straints in which this variable is in a higher position, as these constraints give
lower bounds for this variable. The minimal class is then the largest of the lower

13 Implementation of a parametricity plugin 120

bounds. In the casewhere two variables are linked by an order constraint 𝛼 ≥ 𝛽,
𝛽 is a lowerbound for 𝛼. Consequently, to determine theminimal class for 𝛼, we
must first know the ground class adopted for 𝛽. This order constraint therefore
also constrains the minimisation order of both variables.

The global priority order is therefore determined using the following rules:

– (𝛼, 𝛽) ∈ 𝒟□ reduces to an equality constraint on 𝛼 or no constraint, de‑
pendingon the valueof 𝛽 : it therefore forces variable 𝛽 to be instantiated
before 𝛼 ;

– 𝒟Π(𝛾) = (𝛼, 𝛽) or 𝒟→(𝛾) = (𝛼, 𝛽) forces 𝛾 to be instantiated before
𝛼 and 𝛽 ;

– 𝛼 ≥ 𝛽 forces 𝛽 to be instantiated before 𝛼 ;
– 𝒟𝐾(𝛾, 𝑇) forces 𝛾 to be instantiated before the parametricity classes

present in the annotated type 𝑇 .

13.3.3 Implementation

The role of the inference algorithm is therefore to generate the minimisation or‑
der from the various constraints that appear during traversal, and then to select
theminimal possible class for each variable, with each assignment reducing com‑
plex constraints into new order constraints on other variables yet unassigned.
This algorithm can be implemented in several ways.

Finite domain constraint solving A first idea is to note that the problem of para‑
metricity class inference closely resembles a problem of finite domain constraint
solving. Such a problem can be elegantly solved in the style of Constraint Logic
Programming [82], idiomatic in PROLOG‑based languages such as ELPı. Indeed, [82]: JAFFAR et al. (1987), “Constraint Logic

Programming”each unknown parametricity class in the initial goal can be represented as a vari‑
able with an initial domain ranging from (0, 0) to (4, 4), provided with a partial
order. The various order constraints added on the variables reduce their domain,
leaving only valid solutions. Complex constraints are put asleep until their out‑
put class is known, and when it is, they are automatically reduced and replaced
by new order constraints. Each added constraint is also a constraint on the min‑
imisationorder. Thus, at theendof the traversal, theminimisationorder emerges
naturally and it suffices to calculate the largest lower bound of each variable fol‑
lowing this order to obtain the desired solution.

As we are dealing with parametricity classes and not integers, the domain of vari‑
ables is not classic, therefore we need to implement an ad hoc constraint solver.
Constraint Handling Rules (CHR), available in ELPı andpresented earlier in § 4.1.1,
are one of the best‑knownmethods to express complex algorithms involving the
generation andmanagement of constraints with rules. The CHR language is well
suited to the design of prototype constraint solvers, because the central ingredi‑
ents of these solvers, constraint propagation and consistency checking,14 can be 14: The consistency property is the com‑

patibility at all times between the domains
of variables and the various constraints on
these variables.

implemented as rules. The constraint solver combines these rules with a search
procedure that tests the remaining values in the domains after propagation. In
our case, rules are used to simplify complex constraints and reduce them toorder
constraints on parametricity classes.

13 Implementation of a parametricity plugin 121

Direct style However, the elegance of such a solution comes at the cost of track‑
abilityof control flow in the reductionprocess. Indeed, inconstraint solvers,when
constraints are declared, after an initial propagation phase, they actually remain
in the constraint store in an asleep state, watching the variables they bound to‑
gether, to be awaken every time one of their domains is updated. This behaviour,
necessary to ensure consistency at any time,makes control flow very complex as
it is difficult to knowwhenpropagationwill happen just by reading the code, thus
making debugging phases harder.

Instead, we present an inference algorithm in a more pragmatic style, first accu‑
mulating constraints in a global constraint graph, then reducing it and instanti‑
ating the variables afterwards. In this constraint graph, nodes are parametric‑
ity classes — variable or ground, and different kinds of edges exist, one for each
kind of constraint possibly added during traversal of the goal. An example of con‑
straint graph is available in Figure 13.2. For instance, the edges from 𝑋1 to 𝑋2
and 𝑋3 represent the constraint (𝑋2, 𝑋3) = 𝒟Π(𝑋1), and the edge from 𝑋6
to the constant class (3, 2b) represents the constraint (3, 2b) ≥ 𝑋6.

X1

(2a, 1)

(3, 2b)X2 X6

X3

X5

X4

Π
Π <latexit sha1_base64="aFKnibHZNXUG1bjaEHnrGSgf+wQ=">AAADuXicjVLLTttAFD3BfdD0AbTLbqxGlVqpsuyQEKJuEF3QTaW0EEACVNnOEFz8qj1uFUX5BLbl2/gD+hc9c3EQXUA7I3vunHvPmXvvTJDHUald96KxYN27/+Dh4qPm4ydPny0trzzfLbOqCNUwzOKs2A/8UsVRqoY60rHazwvlJ0Gs9oLTD8a/90MVZZSlO3qSq6PEH6fRcRT6mtD2oc6+Lrdcp99ve92e7To9rmt9Gl6n6/bXbc9xZbRQj0G20hjgECNkCFEhgUIKTTuGj5LzAB5c5MSOMCVW0IrErzBDk9yKUYoRPtFT/sfcHdRoyr3RLIUd8pSYX0GmjdfkZIwraJvTbPFXomzQ27Snomlym3ANaq2EqMYJ0X/x5pH/yzO1aBxjXWqIWFMuiKkurFUq6YrJ3L5RlaZCTszYI/oL2qEw5322hVNK7aa3vvgvJdKgZh/WsRV+31ldyZhEVCb8RnfczhSfqLhd98/cyVUV9nU37OvuGq/J5A15DtkO3on3O5Uj7sf0TyTTgjPDT/re8uSmvCrFvpmOqRt3P2W8oh1L9Iz7L9jCplhtdLHKEzx2u8N1FT3M+KbnD9e+3dhtO96a0/3caW3s1K97ES/xipl7VNnARwwwZB5jnOEXzq33lm+dWN+uQhcaNecF/hpW+QfO4rw6</latexit>→

<latexit sha1_base64="aFKnibHZNXUG1bjaEHnrGSgf+wQ=">AAADuXicjVLLTttAFD3BfdD0AbTLbqxGlVqpsuyQEKJuEF3QTaW0EEACVNnOEFz8qj1uFUX5BLbl2/gD+hc9c3EQXUA7I3vunHvPmXvvTJDHUald96KxYN27/+Dh4qPm4ydPny0trzzfLbOqCNUwzOKs2A/8UsVRqoY60rHazwvlJ0Gs9oLTD8a/90MVZZSlO3qSq6PEH6fRcRT6mtD2oc6+Lrdcp99ve92e7To9rmt9Gl6n6/bXbc9xZbRQj0G20hjgECNkCFEhgUIKTTuGj5LzAB5c5MSOMCVW0IrErzBDk9yKUYoRPtFT/sfcHdRoyr3RLIUd8pSYX0GmjdfkZIwraJvTbPFXomzQ27Snomlym3ANaq2EqMYJ0X/x5pH/yzO1aBxjXWqIWFMuiKkurFUq6YrJ3L5RlaZCTszYI/oL2qEw5322hVNK7aa3vvgvJdKgZh/WsRV+31ldyZhEVCb8RnfczhSfqLhd98/cyVUV9nU37OvuGq/J5A15DtkO3on3O5Uj7sf0TyTTgjPDT/re8uSmvCrFvpmOqRt3P2W8oh1L9Iz7L9jCplhtdLHKEzx2u8N1FT3M+KbnD9e+3dhtO96a0/3caW3s1K97ES/xipl7VNnARwwwZB5jnOEXzq33lm+dWN+uQhcaNecF/hpW+QfO4rw6</latexit>→

<latexit sha1_base64="PpT0D7lj03TiuVG919tQ1XQwiC4=">AAADunicjVLLbtNAFD2peZTwaAtLNhYREkjIstOEBolFVRawQQrQtJXaCtnONB3FL+wxEEX5Bbbwa/wB/AVnbp2qLFqYkT13zr3nzL13JioSXRnf/9laca5dv3Fz9Vb79p2799bWN+7vVXldxmoU50leHkRhpRKdqZHRJlEHRanCNErUfjR9Zf37n1VZ6TzbNbNCHafhJNMnOg6NhY528q8f1zu+t9Xr+y8GLg2/Pxh0aXTt2nMDz5fRQTOG+UZriCOMkSNGjRQKGQztBCEqzkME8FEQO8acWElLi19hgTa5NaMUI0KiU/4n3B02aMa91ayEHfOUhF9JpovH5OSMK2nb01zx16Js0cu056Jpc5txjRqtlKjBKdF/8ZaR/8uztRicYCA1aNZUCGKrixuVWrpiM3cvVGWoUBCz9pj+knYszGWfXeFUUrvtbSj+XxJpUbuPm9gav6+srmJMKiozfuMrbmeOt1T80PTP3slZFe55N9zz7lqvzeQJeR7ZHp6J9xOVNfcT+meSacmZ4wt9T3lyW16VYt9sx9SFu58zXtFOJHrB/Xu8xo5YXfSxyRMCdrvHdRNbWPBNLx+ue7mx1/WC517/Xa+zvdu87lU8xCNmHlBlG28wxIh5nOIbvuOH89KJHO1Mz0JXWg3nAf4ajvkD5bW8jA==</latexit>�

Figure 13.2: Example of constraint graph

A special aspect of the constraint graph is that the direction of the edges is con‑
sistent with the minimisation order of parametricity classes. Thus, in the graph
above, the edge from 𝑋1 to 𝑋2 means that there is a constraint on a dependent
product but also that variable 𝑋1 is the output class, so it must be instantiated
before 𝑋2. The same applies to other kinds of constraints: 𝑋3 must be instan‑
tiated before 𝑋5 and 𝑋6, 𝑋2 before 𝑋4, etc. This means that the constraint
graph is also a priority graph. The final instantiation order can then be obtained
by performing a topological sort on this graph: input nodes are recursively re‑
moved by adding them to a list, to obtain an admissible minimisation order, all
this while ignoring nodes that are not variables. For example, in the graph above,
an admissible order is [𝑋1, 𝑋2, 𝑋4, 𝑋3, 𝑋5, 𝑋6]. If we respect the minimisation
order, when a variable is instantiated, all the edges pointing to this variable, i.e.,
all the lower nodes, must form a set of constant classes. Each time a variable is
instantiated, the corresponding node is removed from the graph. Then, the com‑
plex constraints for which the freshly instantiated variable is the output class can
nowbe reduced toorder constraints andaddedback to thegraph. In thisway, the
invariant is maintained and the next variable is ready to be instantiated. For ex‑
ample, when 𝑋1 is instantiated with the value (2a, 1), the node disappears and
we can reduce the constraint (𝑋2, 𝑋3) = 𝒟Π(𝑋1) into two order constraints
𝑋2 ≥ (2a, 4) and 𝑋3 ≥ (2a, 1) that are added back to the graph. The next
variable in the minimisation order is 𝑋2, and the only constraint pointing to the
associated node in the graph is this new order constraint. So there are no more
complex constraints and instantiation canproceed. Theprocess continues in this
way until all the nodes have been removed from the graph.

13 Implementation of a parametricity plugin 122

13.3.4 Weakening and subtyping

The addition of constraints on a parametricity class ensures that the class as‑
signed to it after translationmatches the needs of the various occurrences of this
variable, i.e., that theassociatedparametricitywitness has sufficient information
in all its occurrences in the global witness. However, this does not mean that all
instances need the same parametricity witness. It is very likely that at least one
occurrence of the variable requires less information than is contained in the wit‑
ness. In such a case, to guarantee thewell‑typedness of theproof term, aweaken‑
ing function must be inserted in front of the witness. The nature of this function
can only be determined when we know the source class and the target class of
the weakening.

For example, let us take the goal processed in § 13.3.1:

Π𝐹 ∶ □𝛼 → □𝛽. Π𝐴 ∶ □𝛾. 𝐹 𝐴 → 𝐹 𝐴

In the trace of the traversal, we can see that the subterm 𝐹 𝐴 is processed twice,
at type □(1,0) and then at type □(0,1). During the traversal, variables 𝐹 and 𝐴
are given associated variables 𝐹 ′ and 𝐴′. In the global parametricitywitness, at
the position of the first occurrence of 𝐹 𝐴, the witness relating it to 𝐹 ′ 𝐴′ must
have type Param(1,0) (𝐹 𝐴) (𝐹 ′ 𝐴′) , and at its second occurrence, a proof of
type Param(0,1) (𝐹 𝐴) (𝐹 ′ 𝐴′) is expected. Both occurrences therefore involve
witnesses of different types, both subtypes of the final type that will be retained
after the class inference phase. However, this final type is not known during the
traversal, yet it is necessary to add a weakening function in front of the witness
𝐹𝑅 in the proof term at the moment the occurrences of 𝐹 𝐴 are traversed.

In order to solve this problem, in the implementation of TROCQ, weakenings are
represented syntactically with an identity with phantom arguments associated
with the parametricity classes present in the constraint graph:

Definition weaken (m1 n1 m2 n2 : map_class) {A : Type} (a : A) = a.

This allowskeepingawell‑formedandwell‑typed term,while adding information
that is visible when the term is traversed. Once the variables have been assigned,
a completionprocedure is run, replacing theseplaceholderswith trueweakening
functions, that can be generated at this point, since the placeholder contains the
two necessary ground parametricity classes.

Note that weakening involves a suspension in the cases of the abstraction and
the application. Thepurpose of this suspension is to handle the case of a𝛽‑redex,
i.e., an application with an abstraction at its head. Suspension is implemented
by an ELPı data type that can contain the body of an abstraction in order to de‑
lay the creation of the weakening function until the arguments supplied to this
abstraction have been read. Once again, we exploit the HOAS representation of
COQ terms with ELPı meta‑functions.

13.4 Universe polymorphism

Throughout this document, both in parts discussing theory and parts related to
implementation, we presented 𝜆‑terms in calculi equipped with a hierarchy of
universeswhere universes are indexed by an integer representing their level. The
type system then allows giving to eachuniverse □𝑖 a type, its successor □𝑖+1, or
any universe with a strictly higher level thanks to the cumulativity rule. However,

13 Implementation of a parametricity plugin 123

the various parametricity lemmas we described are universe-polymorphic, i.e.,
they work with types from any universes as long as these universes respect the
various constraints imposedby thedefinitionof the lemma. For example, the rule
TROCQPı uses three universe levels 𝑖, 𝑗, and 𝑘, that can take any value as long as
the constraint 𝑘 = max(𝑖, 𝑗) is respected.

When using parametricity lemmas, bound universes must therefore be instanti‑
ated to form valid terms. However, the important property for typing is just ex-
istence of an admissible value for each bound universe. Therefore, when we are
sure that there is always a solution to the problemof universe constraints, we can
afford leaving universes implicit. For example, a parametricity translation such
as those presented in this thesis is a structural translation that does not intro‑
duce additional universes or additional universe constraints with respect to the
context of the initial goal, and does not aim to reason about universes. As there
is no risk of introducing inconsistencies, we can afford ignoring universes in our
theoretical presentations.

At the timeof implementation, universes canalsobe left implicit because theCOQ
kernel can infer them during typechecking. However, in the context of universe
polymorphism, this inference is less powerful because it must also infer bound
universes.15 It then becomes necessary to make explicit some universes present 15: In the rest of this section, we consider

that we are in this context.in the terms. However, universe polymorphism is still an experimental feature in
COQ‑ELPı. In addition, some universes in TROCQ are algebraic, i.e., they are ex‑
pressed using other universes and arithmetic operations, and the current imple‑
mentation of COQ is limited regarding this feature. This section therefore details
the issues that arise when implementing TROCQ, about typical ambiguity and al‑
gebraic universes.

13.4.1 Clearing typical ambiguity

When a universe‑polymorphic constant is defined in COQ, the universe variables
present in the term become bound universes. For example, in the following defi‑
nition, A and B are types each living in a fresh universe (say 𝑢0 and 𝑢1 respec‑
tively), but these universes are left implicit thanks to typical ambiguity, a feature
in COQ that allows automated inference of universe levels:

Definition twice (A : Type) (B : Type) (f : A A B) : A B =
fun a f a a.

When the term is given to COQ to be stored as a constant and named twice, levels
𝑢0 and 𝑢1 are replaced with bound universes, 𝑖 and 𝑗 respectively. The twice
constant is then an incomplete term awaiting a universe instance, i.e., an array
of universe levels that gives a value to each bound universe. Once again, thanks
to typical ambiguity, the universe instance can be omitted when using the con‑
stant and COQ takes care of the inference, allowing users to benefit from the ad‑
vantages of universe polymorphismwithoutmaking the terms syntactically heav‑
ier.

However, this inference is flawed because it does not minimise the number of
bound universes. Indeed, there are cases in which a universe‑polymorphic con‑
stant with at least two bound universes can be instantiated with the same uni‑
verse several timeswithin the same instance. Yet, in such a case, COQwill allocate
a different universe variable for each bound universe in the instance. For exam‑
ple, if the constant twice defined above is used in another term, it will appear

13 Implementation of a parametricity plugin 124

instantiated by COQ, i.e., twice@{u 3 u 4 }, even though it is possible to instanti‑
ate it twicewith u 3 . If the term containing such a constant is then defined in COQ,
these universes become bound. As a result, the universe instance of the global
term contains more bound universes than necessary, leading in some cases to
subsequent ill‑typed terms.

Toguarantee thewell‑typedness of termsgeneratedbyameta‑program,wemust
determine whether such cases are possible in order to knowwhether typical am‑
biguity can be used. In the case of TROCQ’s implementation, many universes had
tobemadeexplicit. Indeed, by carefullydefiningparametricity lemmas, it is theo‑
retically possible to guarantee the invariant that a parametricity witness requires
as many universes as the initial goal. For this purpose, parametricity lemmas
must be defined by imposing a maximum size constraint on their universe in‑
stance, which disturbs universe inference in COQ. Most universes then have to
be annotated manually to have maximum control over the term that is actually
defined. To achieve this, it was necessary to add new functions to COQ‑ELPı to
allow handling universe‑polymorphic terms, universe instances, etc.

For example, the parametricity lemmaused to build a parametricity witness for a
dependent product, presented in § 13.1.1, is actually defined as follows in COQ:

Definition Param𝛾
Π@{i j k | i k, j k}

(A A' : Type@{i}) (A R : Param𝛼@{i} A A')
(B : A Type@{j}) (B' : A' Type@{j})
(B R : forall a a' a R , Param𝛽@{j} (B a) (B' a')) :
Param𝛾@{k} (forall (a : A), B a) (forall (a' : A'), B' a').

Making universes explicit in the type of the definition in fact amounts to disabling
typical ambiguity, as COQ is no longer allowed to infer more related universes or
constraints than specified in the header of this definition, which leads to annotat‑
ing the termby hand. Indeed, in the context of universe polymorphism, the proof
assistant can add universe constraints thatwe have not anticipated or thatwe do
not want. These inferred constraints are logical and necessary for the term to be
well typed, but they can result from poor manual annotation. If the universe in‑
stance is blocked by making the definition header explicit as above, then these
additional silent constraints become typing errors. By iterating on the errors sup‑
plied, we can then design the definition corresponding to the minimal annota‑
tions desired. The equivalent of this header in COQ‑ELPı is the following:

@udecl! [I, J, K] ff [le I K, le J K] ff
coq.env.add-const %

Value ff represents boolean false, indicating that the lists of universes and con‑
straints cannot be extended by COQ. Changing one of these booleans to true is
equivalent to adding a + after one of the two lists in the COQ definition, and gives
the proof assistant the freedom to add values. A constant K can then be instan‑
tiated with pglobal K UI, where UI is the universe instance obtained from a list
of universe variables:

coq.univ-instance UI [I 0 , J 0 , K 0]

13.4.2 Algebraic universes andbounduniverses

Actually, the size of universe instances in the parametricity lemmas could be fur‑
ther reduced. Creating a new fresh universe for a dependent product and forcing

13 Implementation of a parametricity plugin 125

it to be greater than the domain and codomain’s universes, as done in the para‑
metricity lemma presented in the last subsection, can be avoided by using alge-
braic universes, i.e., universes created from other universes with two operations:
maximum and successor. Indeed, the typing rule for the dependent product in‑
volves only two universes:

Γ ⊢ 𝐴 ∶ □𝑖 Γ, 𝑎 ∶ 𝐴 ⊢ 𝐵 ∶ □𝑗

Γ ⊢ Π𝑎 ∶ 𝐴. 𝐵 ∶ □max(𝑖,𝑗)

Thus, the parametricity lemma theoretically requires only two bound universes,
and the lemma for universes requires only one, since a universe is always related
to itself. As a result, it is possible to maintain the invariant that the associated
goal and the parametricity witness use as many universes as the initial goal.

However, the current implementation of universe polymorphism in COQdoes not
allow this kind of definition. This is because the parametricity lemma on depen‑
dent products builds a parametricity witness in the form of a record, i.e., an in‑
ductive type. Such a value is necessarily obtained by the corresponding record
constructor. However, for a technical reason in the current implementation of
the universe constraint graph verification algorithm in COQ, it is impossible to in‑
stantiate a constant with an algebraic universe. It is therefore necessary to use a
fresh universe and additional constraints.

So, for each dependent product or universe appearing in the input term, the im‑
plemented parametricity translation creates a fresh universe. Furthermore, with‑
out a specificmemorymechanism, encountering the sameuniverse twice creates
two different fresh universes. All this makes it difficult to track universes used in
the traversal of the goal.

Finally, this problem prevents the implementation of a forward chaining proof
transfer feature within TROCQ. Indeed, rather than translating an initial goal 𝐺
to be proved within COQ, it could be interesting, by flipping all the parametricity
witnesses provided by the user in the knowledge base, to translate a lemma 𝑝′

into a lemma 𝑝 usable in a proof in the context selected by the user for their for‑
malisation. However, in such a case, at the time of definition, the header would
containmany useless bound universes, making it difficult to instantiate the term
in an optimal way afterwards. We could then obtain ill‑typed proofs if we let COQ
carry out inference of the universe instance, and manual annotation would re‑
quire significant and artificial work since these bound universes have no relevant
raison d’être.

In the context of the use of universe polymorphism in COQ‑ELPı, various predi‑
cates canbedeveloped, suchasa coq.univ.super predicate toobtain the succes‑
sor of a universe, or coq.univ.max to obtain themaximumof two universes, thus
making it possible to forge arbitrary algebraic universes. However, despite the
possibility of making these low‑level details accessible from the meta‑language,
when the term is translated into COQ, the algebraic universe will inevitably be‑
come a fresh universe variable accompanied by universe constraints.

Conclusion andperspectives

Contributions

In this document, we have presented both prototypes of proof transfer plugins
for the COQ proof assistant developed throughout this thesis. The general con‑
text of this work is the search for solutions to allow a user to employ several for‑
malisations of the same mathematical concept in their proofs in a transparent
way, while keeping interoperability between all the proofs performed on a given
theory, regardless of the representation chosen in each proof.

The first prototype, TRAKT, improves proof automation for statements from the
SMT family by reformulating these statements and expressing them in a canoni‑
cal form adapted to the input format of the proof automation tools available in
COQ. The project adds support for the theory of congruence and uninterpreted
functions to the existing automation tools, as well as more flexible logic process‑
ing, allowing adaptation of the goal to the needs of various automation tactics.
The trakt tactic has been successfully integrated into the SMTCOQ plugin via
the SNıPER project, making several goal pre‑processing tools work together.

In TRAKT, different representations of a givenmathematical object are related by
isomorphisms, or partial embeddings in the case of subtyping, and the tool fo‑
cuses on goals of the SMT family, which are the target of the automated provers
that we wish to execute after pre‑processing. This preprocessing bridging the
gap between automated and interactive theorem proving, is an instance of the
more general problem of proof transfer, target of the second prototype, TROCQ.
The main ingredient of this second contribution is a new modular parametricity
framework able to accomodate a more general class of relations than the pre‑
vious approaches of raw and univalent parametricity. The modularity of TROCQ
lies in a hierarchy of parametricity witnesses exploited to perform proof transfer
while avoiding as much as possible the use of axioms when they are not neces‑
sary.

Perspectives

The social objective of formal proof is to establish greater trust between humans
thanks to greater trust in the results of researchers, engineers, logicians, etc., i.e.,
certified proofs and computer programs. The various current implementations
of proof assistants all derive from different paths in the search for the best log‑
ical framework to carry out these formal proofs, and within each of these tools,
there exists a wide spectrum of formalisation techniques. This Cambrian explo‑
sionmakes it possible to explore a vast space of possibilities, but isolates the var‑
ious formalisation efforts from each other.

Any good practices brought from the domains of software development and pro‑
gramming language theory are therefore welcome for users of proof assistants
who, de facto, by choosing this kind of software, accept the compromise of a
high level of confidence at the price of more — often way too — manual proofs.
Ideally, a user carrying out formalisation work would like to be able to use the

data structures they consider to be themost practical, without having tomanage
equivalences manually for their development to conform to the encodings com‑
monly used by the community of the proof assistant they chose. Conversely, if
a formalisation has already been carried out using an encoding of a mathemati‑
cal concept, the user wants to be able to use this work with another encoding of
the same concept, given that they are equivalent. Proof transfermechanisms are
an excellent intermediary tool in this kind of situation, and help factorise proof
efforts.

Nevertheless, there is still a step tobe taken to turn theprototypesdevelopeddur‑
ing this thesis into real proof assistance tools. Indeed, as proof assistants are re‑
searchobjects, thedevelopmentof their tooling isbeingdoneat the same timeas
the development of their logical formalism itself and ofmeta‑programming tech‑
niques. Although some of the foundations of these tools are already stable, such
as support for the Calculus of Constructions, or the use of logic programming to
perform syntactic translations, certain subtleties, mainly related to universes, re‑
main unstable and are delaying their maturity.

Fromamorepractical point of view, theseprototypes couldbemademoreusable
by pushing further the commands used to add information to the database. In
the case of TROCQ, we could imagine a command that generates all possible para‑
metricitywitnesses relatingan inductive type to itself. This kindof proof seems to
be always possible in theory, and would allow transfer of user data types within
an arbitrarily complex goal, for free. Management of the impredicative universe
ℙ would bring the tool closer to the standard version of COQ rather than relying
on the HoTT library. Finally, we can imagine, for both TRAKT and TROCQ, build‑
ing proof libraries to be added to the database as soon as the plugin is imported,
so that the user can effortlessly start performing proof transfer when it concerns
data types that are widespread in formalisations. A mathematician might enjoy
TROCQ to be equipped with a library of parametricity witnesses already proven
for the data types in the MATHCOMP library, so as not to have to carry out these
proofs themselves, and tobe able to easily turn, e.g., amatrix into a list of lists.

The completion of these proof transfer tools would make it simpler to reason
modulo equivalence within the proof assistant. Bringing the construction of for‑
mal proofs closer to the intuitive reasoning that can be done on paper attracts
new users, moving a little closer to a world without software faults, with all the
implied societal benefits.

Bibliography

Here are the references in citation order.

[1] Gottlob FREGE. “Begriffsschrift : Eine der Arithmetischen Nachgebildete Formelsprache des Reinen Denkens.” In:
(1882) (cited on page 3).

[2] Giuseppe PEANO. “Arithmetices principia : Novamethodo exposita.” In: (1889) (cited on page 3).

[3] Georg CANTOR. “Grundlagen einer allgemeinenMannigfaltigkeitslehre. Einmathematisch‑philosophischer Versuch
in der Lehre des Unendlichen.” In: (1883) (cited on page 3).

[4] Alain COLMERAUER et al. “Un système de communication homme‑machine en français.” In: Rapport préliminaire,
Groupe de Recherche en Intelligence Artificielle (1973) (cited on pages 3, 34).

[5] Leslie LAMPORT. “The Temporal Logic of Actions.” In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 16.3 (1994), pp. 872–923 (cited on page 3).

[6] Jean‑Christophe FıLLıÂTRE and Andrei PAſKEVıCH. “Why3 — Where Programs Meet Provers.” In: Programming Lan-
guages and Systems: 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings 22.
Springer. 2013, pp. 125–128 (cited on page 3).

[7] Niki VAZOU. Liquid Haskell: Haskell as a Theorem Prover. University of California, San Diego, 2016 (cited on page 3).

[8] Tobias NıPKOW, Markus WENZEL, and Lawrence C PAULſON. Isabelle/HOL: a proof assistant for higher-order logic.
Springer, 2002 (cited on pages 4, 29).

[9] Ulf NORELL. “Dependently Typed Programming in Agda.” In: Advanced Functional Programming, 6th International
School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lectures. Ed. by Pieter W. M. KOOPMAN, Rinus PLAſ‑
MEıJER, and S. Doaitse SWıERſTRA. Vol. 5832. Lecture Notes in Computer Science. Springer, 2008, pp. 230–266. DOı:
10.1007/978-3-642-04652-0_5 (cited on page 4).

[10] Leonardo DE MOURA and Sebastian ULLRıCH. “The Lean 4 Theorem Prover and Programming Language.” In: Au-
tomated Deduction - CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July 12-
15, 2021, Proceedings. Ed. by André PLATZER and Geoff SUTCLıFFE. Vol. 12699. Lecture Notes in Computer Science.
Springer, 2021, pp. 625–635. DOı: 10.1007/978-3-030-79876-5_37 (cited on page 4).

[11] The CoqDevelopment Team. The Coq Proof Assistant. Version 8.16. Sept. 2022. DOı: 10.5281/zenodo.7313584 (cited
on pages 4, 7).

[12] Valentin BLOT et al. “Compositional pre‑processing for automated reasoning in dependent type theory.” In: Pro-
ceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs. 2023, pp. 63–77
(cited on pages 5, 42, 51, 63, 66).

[13] JohnC. REYNOLDſ. “Types, Abstraction andParametric Polymorphism.” In: Information Processing 83, Proceedings
of the IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983. Ed. by R. E. A. MAſON. North‑
Holland/IFIP, 1983, pp. 513–523 (cited on pages 5, 33, 73).

[14] Nicolas TABAREAU, Éric TANTER, and Matthieu SOZEAU. “The marriage of univalence and parametricity.” In: Journal
of the ACM (JACM) 68.1 (2021), pp. 1–44 (cited on pages 5, 71, 75, 80, 92, 98).

[15] Cyril COHEN, Enzo CRANCE, and Assia MAHBOUBı. “Trocq: Proof Transfer for Free, With or Without Univalence.” In:
European Symposium on Programming. 2024 (cited on pages 5, 72).

[16] Enrico TAſſı. “Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi 𝜆Prolog dialect).” In: (2018)
(cited on pages 5, 8, 34).

[17] Frédéric BEſſON. “Fast Reflexive Arithmetic Tactics the Linear Case and Beyond.” In: Types for Proofs and Pro-
grams, International Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected Papers. Ed.
by Thorsten ALTENKıRCH and Conor MCBRıDE. Vol. 4502. Lecture Notes in Computer Science. Springer, 2006, pp. 48–
62. DOı: 10.1007/978-3-540-74464-1_4 (cited on pages 7, 29, 43).

https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.1007/978-3-540-74464-1_4

[18] Alonzo CHURCH. “A set of postulates for the foundation of logic.” In: Annals of mathematics (1933), pp. 839–864
(cited on page 9).

[19] Alan M TURıNG. “Computability and 𝜆‑definability.” In: The Journal of Symbolic Logic 2.4 (1937), pp. 153–163 (cited
on page 9).

[20] Alonzo CHURCH. “A formulation of the simple theory of types.” In: The journal of symbolic logic 5.2 (1940), pp. 56–68
(cited on page 10).

[21] Henk P BARENDREGT. “Introduction to generalized type systems.” In: (1991) (cited on page 11).

[22] Stefano BERARDı. “Towards a mathematical analysis of the Coquand‑Huet calculus of constructions and the other
systems inBarendregt’s cube.” In:Technical report, Carnegie-MellonUniversity (USA) andUniversità di Torino (Italy)
(1988) (cited on page 12).

[23] Jan TERLOUW. “Een nadere bewijstheoretische analyse van GSTT’s.” In:Manuscript (1989) (cited on page 12).

[24] Thierry COQUAND and Gérard HUET. “The calculus of constructions.” PhD thesis. INRIA, 1986 (cited on page 13).

[25] Jean‑Yves GıRARD. “Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur.”
In: (1972) (cited on page 13).

[26] Gottlob FREGE. Grundgesetze der Arithmetik. 1903 (cited on page 13).

[27] Matthieu SOZEAU and Nicolas TABAREAU. “Universe polymorphism in Coq.” In: International Conference on Interac-
tive Theorem Proving. Springer. 2014, pp. 499–514 (cited on page 16).

[28] Christine PAULıN‑MOHRıNG. “Définitions Inductives en Théorie des Types.” PhD thesis. Université Claude Bernard‑
Lyon I, 1996 (cited on page 16).

[29] Philip WADLER. “Monads for functional programming.” In: Advanced Functional Programming: First International
Spring School on Advanced Functional Programming Techniques Båstad, Sweden, May 24–30, 1995 Tutorial Text
1. Springer. 1995, pp. 24–52 (cited on page 20).

[30] Roger HıNDLEY. “The principal type‑scheme of an object in combinatory logic.” In: Transactions of the american
mathematical society 146 (1969), pp. 29–60 (cited on page 22).

[31] RobinMıLNER. “A theory of type polymorphism in programming.” In: Journal of computer and system sciences 17.3
(1978), pp. 348–375 (cited on page 22).

[32] Cordelia V HALL et al. “Type classes in Haskell.” In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 18.2 (1996), pp. 109–138 (cited on page 25).

[33] Bruno CdS OLıVEıRA, Adriaan MOORſ, and Martin ODERſKY. “Type classes as objects and implicits.” In: ACM Sigplan
Notices 45.10 (2010), pp. 341–360 (cited on page 25).

[34] Matthieu SOZEAU and Nicolas OURY. “First‑class type classes.” In: International Conference on Theorem Proving in
Higher Order Logics. Springer. 2008, pp. 278–293 (cited on page 25).

[35] Assia MAHBOUBı and Enrico TAſſı.Mathematical Components. Zenodo, Jan. 2021 (cited on pages 26, 45).

[36] Cyril COHEN, Kazuhiko SAKAGUCHı, and Enrico TAſſı. “Hierarchy Builder: algebraic hierarchies made easy in Coq
with Elpi.” In: FSCD 2020-5th International Conference on Formal Structures for Computation and Deduction. 167.
2020, pp. 34–1 (cited on page 26).

[37] Assia MAHBOUBı and Enrico TAſſı. “Canonical structures for the working Coq user.” In: International Conference on
Interactive Theorem Proving. Springer. 2013, pp. 19–34 (cited on page 26).

[38] David DELAHAYE. “A tactic language for the system Coq.” In: Logic for Programming and Automated Reasoning: 7th
International Conference, LPAR2000Reunion Island, France, November 6–10, 2000Proceedings 7. Springer. 2000,
pp. 85–95 (cited on page 26).

[39] Sascha BÖHME and Tobias NıPKOW. “Sledgehammer: judgement day.” In: Automated Reasoning: 5th International
Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings 5. Springer. 2010, pp. 107–121 (cited
on page 29).

[40] Łukasz CZAJKA and Cezary KALıſZYK. “Hammer for Coq: Automation for dependent type theory.” In: Journal of au-
tomated reasoning 61 (2018), pp. 423–453 (cited on pages 29, 61).

[41] Burak EKıCı et al. “SMTCoq: A Plug‑In for Integrating SMT Solvers into Coq.” In: Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II. Ed. by Rupak
MAJUMDAR and Viktor KUNCAK. Vol. 10427. Lecture Notes in Computer Science. Springer, 2017, pp. 126–133. DOı:
10.1007/978-3-319-63390-9_7 (cited on pages 29, 43).

[42] Clark BARRETT, Aaron STUMP, Cesare TıNELLı, et al. “The SMT‑LIB Standard: Version 2.0.” In: Proceedings of the 8th
international workshop on satisfiability modulo theories (Edinburgh, UK). Vol. 13. 2010, p. 14 (cited on page 29).

[43] Matthieu SOZEAU. “A New Look at Generalized Rewriting in Type Theory.” In: J. Formaliz. Reason. 2.1 (2009), pp. 41–
62. DOı: 10.6092/issn.1972-5787/1574 (cited on pages 32, 98).

[44] Gilles BARTHE, Venanzio CAPRETTA, and Olivier PONſ. “Setoids in type theory.” In: J. Funct. Program. 13.2 (2003),
pp. 261–293. DOı: 10.1017/S0956796802004501 (cited on page 32).

[45] Cyril COHEN, Maxime DÉNÈſ, and Anders MÖRTBERG. “Refinements for Free!” In: Certified Programs and Proofs -
Third International Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings. Ed. by
Georges GONTHıER and Michael NORRıſH. Vol. 8307. Lecture Notes in Computer Science. Springer, 2013, pp. 147–
162. DOı: 10.1007/978-3-319-03545-1_10 (cited on pages 32, 98).

[46] Matthieu SOZEAU et al. “TheMetaCoq Project.” In: J. Autom. Reason. 64.5 (2020), pp. 947–999. DOı: 10.1007/s10817-
019-09540-0 (cited on pages 34, 98).

[47] Pierre‑Marie PÉDROT. “Ltac2: tactical warfare.” In: The Fifth International Workshop on Coq for Programming Lan-
guages, CoqPL. 2019, pp. 13–19 (cited on page 34).

[48] Cvetan DUNCHEV et al. “ELPI: Fast, Embeddable, 𝜆Prolog Interpreter.” In: Logic for Programming, Artificial Intelli-
gence, and Reasoning. Springer. 2015, pp. 460–468 (cited on page 34).

[49] Dale MıLLER and Gopalan NADATHUR. A logic programming approach to manipulating formulas and programs. Uni‑
versity of Pennsylvania. Moore School of Electrical Engineering…, 1987 (cited on page 35).

[50] Frank PFENNıNG and Conal ELLıOTT. “Higher‑Order Abstract Syntax.” In: ACM sigplan notices 23.7 (1988), pp. 199–
208 (cited on page 35).

[51] ThomFRÜHWıRTH. “Constraint Handling Rules.” In: French School on Theoretical Computer Science. Springer, 1994,
pp. 90–107 (cited on pages 36, 115).

[52] Nicolaas Govert DE BRUıJN. “Lambda calculus notation with nameless dummies, a tool for automatic formula ma‑
nipulation, with application to the Church‑Rosser theorem.” In: Indagationes Mathematicae (Proceedings). Vol. 75.
5. Elsevier. 1972, pp. 381–392 (cited on page 37).

[53] Frédéric BEſſON. “ppsimpl: a reflexive Coq tactic for canonising goals.” In: Coq Workshop on Programming Lan-
guages. https://popl17.sigplan.org/details/main/3/ppsimpl-a-reflexive-Coq-tactic-for-canonising-
goals. 2017 (cited on page 46).

[54] Kazuhiko SAKAGUCHı.Micromega tactics for Mathematical Components. Version 1.12. 2019–2022 (cited on page 49).

[55] Frédéric BEſſON. “Itauto: An Extensible Intuitionistic SAT Solver.” In: 12th International Conference on Interactive
Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual Conference). Ed. by Liron COHEN and
Cezary KALıſZYK. Vol. 193. LIPIcs. Schloss Dagstuhl ‑ Leibniz‑Zentrum für Informatik, 2021, 9:1–9:18. DOı: 10.4230/
LIPIcs.ITP.2021.9 (cited on pages 49, 62).

[56] Andrew W. APPEL. “Verified Software Toolchain ‑ (Invited Talk).” In: Programming Languages and Systems - 20th
European Symposium on Programming, ESOP 2011, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings. Ed. by Gilles
BARTHE. Vol. 6602. Lecture Notes in Computer Science. Springer, 2011, pp. 1–17. DOı: 10.1007/978-3-642-19718-
5_1 (cited on page 63).

[57] AndrewW. APPEL et al. Verifiable C. 2022 (cited on page 63).

[58] John C. MıTCHELL. “Representation Independence and Data Abstraction.” In: Conference Record of the Thirteenth
Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida, USA, January
1986. ACM Press, 1986, pp. 263–276. DOı: 10.1145/512644.512669 (cited on page 71).

https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.1017/S0956796802004501
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://popl17.sigplan.org/details/main/3/ppsimpl-a-reflexive-Coq-tactic-for-canonising-goals
https://popl17.sigplan.org/details/main/3/ppsimpl-a-reflexive-Coq-tactic-for-canonising-goals
https://doi.org/10.4230/LIPIcs.ITP.2021.9
https://doi.org/10.4230/LIPIcs.ITP.2021.9
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1145/512644.512669

[59] Simon BOULıER, Pierre‑Marie PÉDROT, and Nicolas TABAREAU. “The next 700 syntactical models of type theory.” In:
Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, Jan-
uary 16-17, 2017. Ed. by Yves BERTOT and Viktor VAFEıADıſ. ACM, 2017, pp. 182–194. DOı: 10.1145/3018610.3018620
(cited on pages 71, 79).

[60] Philip WADLER. “Theorems for Free!” In: Proceedings of the fourth international conference on Functional program-
ming languages and computer architecture, FPCA 1989, London, UK, September 11-13, 1989. Ed. by Joseph E.
STOY. ACM, 1989, pp. 347–359. DOı: 10.1145/99370.99404 (cited on page 74).

[61] Jean‑Philippe BERNARDY andMarc LAſſON. “Realizability and Parametricity in Pure Type Systems.” In: Foundations
of Software Science and Computational Structures - 14th International Conference, FOSSACS 2011, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings. Ed. by Martin HOFMANN. Vol. 6604. Lecture Notes in Computer Science. Springer,
2011, pp. 108–122. DOı: 10.1007/978-3-642-19805-2_8 (cited on page 74).

[62] Jean‑PhilippeBERNARDY, Patrik JANſſON, andRoss PATERſON. “Proofs for free ‑ Parametricity for dependent types.”
In: J. Funct. Program. 22.2 (2012), pp. 107–152. DOı: 10.1017/S0956796812000056 (cited on page 74).

[63] Chantal KELLER and Marc LAſſON. “Parametricity in an Impredicative Sort.” In: Computer Science Logic (CSL’12) -
26th InternationalWorkshop/21st Annual Conferenceof theEACSL, CSL2012, September3-6, 2012, Fontainebleau,
France. Ed. by Patrick CÉGıELſKı and Arnaud DURAND. Vol. 16. LIPIcs. Schloss Dagstuhl ‑ Leibniz‑Zentrum für Infor‑
matik, 2012, pp. 381–395. DOı: 10.4230/LIPIcs.CSL.2012.381 (cited on page 74).

[64] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for
Advanced Study: https://homotopytypetheory.org/book, 2013 (cited on pages 75, 77, 83).

[65] Andrej BAUER et al. “The HoTT library: a formalization of homotopy type theory in Coq.” In: Proceedings of the 6th
ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017. Ed. by
Yves BERTOT and Viktor VAFEıADıſ. ACM, 2017, pp. 164–172. DOı: 10.1145/3018610.3018615 (cited on pages 78, 82).

[66] Talia RıNGER et al. “Proof repair across type equivalences.” In: PLDI ’21: 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by
Stephen N. FREUND and Eran YAHAV. ACM, 2021, pp. 112–127. DOı: 10.1145/3453483.3454033 (cited on page 79).

[67] David AſPıNALL and Adriana B. COMPAGNONı. “Subtyping dependent types.” In: Theor. Comput. Sci. 266.1‑2 (2001),
pp. 273–309. DOı: 10.1016/S0304-3975(00)00175-4 (cited on page 93).

[68] Talia RıNGER et al. “Proof repair across type equivalences.” In: PLDI ’21: 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by
Stephen N. FREUND and Eran YAHAV. ACM, 2021, pp. 112–127. DOı: 10.1145/3453483.3454033 (cited on page 98).

[69] Gilles BARTHE and Olivier PONſ. “Type Isomorphisms and Proof Reuse in Dependent Type Theory.” In: Foundations
of Software Science and Computation Structures. Ed. by Furio HONſELL and Marino MıCULAN. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 57–71 (cited on page 98).

[70] Nicolas MAGAUD. “Changing Data Representation within the Coq System.” In: TPHOLs’2003. Vol. 2758. © Springer‑
Verlag. LNCS, Springer‑Verlag, 2003 (cited on page 98).

[71] Neelakantan R. KRıſHNAſWAMı and Derek DREYER. “Internalizing Relational Parametricity in the Extensional Calcu‑
lus of Constructions.” In: Computer Science Logic 2013 (CSL 2013). Ed. by Simona RONCHı DELLA ROCCA. Vol. 23.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz‑Zentrum
fuer Informatik, 2013, pp. 432–451. DOı: 10.4230/LIPIcs.CSL.2013.432 (cited on page 98).

[72] Maxime DÉNÈſ, Anders MÖRTBERG, and Vincent SıLEſ. “A Refinement‑Based Approach to Computational Algebra in
Coq.” In: Interactive Theorem Proving. Ed. by Lennart BERıNGER and Amy FELTY. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 83–98 (cited on page 98).

[73] Peter LAMMıCH. “Automatic Data Refinement.” In: Interactive Theorem Proving. Ed. by Sandrine BLAZY, Christine
PAULıN‑MOHRıNG, and David PıCHARDıE. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 84–99 (cited on
page 98).

[74] Florian HAFTMANN et al. “Data Refinement in Isabelle/HOL.” In: Interactive Theorem Proving. Ed. by Sandrine BLAZY,
Christine PAULıN‑MOHRıNG, and David PıCHARDıE. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 100–115
(cited on page 98).

https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/99370.99404
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://homotopytypetheory.org/book
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1016/S0304-3975(00)00175-4
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.4230/LIPIcs.CSL.2013.432

[75] BrianHUFFMAN andOndřej KUNČAR. “Lifting and Transfer: AModular Design for Quotients in Isabelle/HOL.” In:Certi-
fied ProgramsandProofs. Ed. byGeorgesGONTHıERandMichaelNORRıſH. Cham:Springer International Publishing,
2013, pp. 131–146 (cited on page 98).

[76] Peter LAMMıCH and Andreas LOCHBıHLER. “Automatic Refinement to Efficient Data Structures: A Comparison of Two
Approaches.” In: J. Autom. Reason. 63.1 (2019), pp. 53–94. DOı: 10.1007/s10817-018-9461-9 (cited on page 98).

[77] Théo ZıMMERMANN and Hugo HERBELıN. “Automatic and Transparent Transfer of Theorems along Isomorphisms
in the Coq Proof Assistant.” In: Conference on Intelligent Computer Mathematics. Washington, D.C., United States,
2015 (cited on page 98).

[78] Carlo ANGıULı et al. “Internalizing representation independence with univalence.” In: Proc. ACM Program. Lang.
5.POPL (2021), pp. 1–30. DOı: 10.1145/3434293 (cited on page 98).

[79] Abhishek ANAND and Greg MORRıſETT. Revisiting Parametricity: Inductives and Uniformity of Propositions. 2017
(cited on page 98).

[80] Nicolas TABAREAU, Éric TANTER, and Matthieu SOZEAU. “Equivalences for free: univalent parametricity for effective
transport.” In: Proceedings of the ACM on Programming Languages 2.ICFP (2018), pp. 1–29 (cited on page 98).

[81] Xavier ALLAMıGEON,QuentinCANU, andPierre‑YvesSTRUB. “A FormalDisproof ofHirschConjecture.” In:Proceedings
of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, Boston, MA, USA,
January 16-17, 2023. Ed. by Robbert KREBBERſ et al. ACM, 2023, pp. 17–29. DOı: 10.1145/3573105.3575678 (cited
on page 99).

[82] Joxan JAFFAR and Jean‑Louis LAſſEZ. “Constraint Logic Programming.” In: Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. 1987, pp. 111–119 (cited on page 120).

https://doi.org/10.1007/s10817-018-9461-9
https://doi.org/10.1145/3434293
https://doi.org/10.1145/3573105.3575678

Titre : Méta-programmation pour le transfert de preuve en théorie des types dépendants

Mot clés : preuve formelle, automatisation des preuves, méta-programmation

Résumé : En mathématiques comme en infor-
matique, il est d’usage de faire appel à des ou-
tils numériques de vérification pour augmenter
la confiance dans les preuves et les logiciels.
La pratique la plus commune est le test, mais
elle est limitée. Les assistants de preuve in-
teractifs sont des outils permettant d’effectuer
des preuves avec une grande confiance, lais-
sant l’humain trouver les idées des preuves
tout en vérifiant méticuleusement que toutes
les étapes de la preuve sont valides. Cette
thèse s’inscrit dans une lignée de travaux vi-
sant à automatiser les preuves, avec l’objec-
tif final de répandre l’usage des assistants de

preuve à la place du test logiciel, partout où
cela est possible et pertinent. On s’intéresse
ici au partage de théorie formelle entre plu-
sieurs représentations différentes d’un même
concept mathématique, ou plusieurs implé-
mentations d’une même spécification. Sur le
plan théorique, cette étude s’appuie sur l’ana-
lyse de traductions de paramétricité pour le
Calcul des Constructions, et en propose une
généralisation. Ces résultats s’incarnent dans
la conception de deux outils de transfert de
preuve, TRAKT et TROCQ, dont on discute
ici l’implémentation, à l’aide du méta-langage
COQ-ELPI.

Title: Meta-Programming for Proof Transfer in Dependent Type Theory

Keywords: formal proof, proof automation, meta-programming

Abstract: In both mathematics and computer
science, it is common practice to use digi-
tal verification tools to increase confidence in
proofs and software. The most common prac-
tice is testing, but it is limited. Interactive proof
assistants are tools made to perform proofs
with high confidence, letting humans come
up with proof ideas while meticulously check-
ing that all proof steps are valid. This thesis
is part of a line of work aimed at automat-
ing proofs, with the ultimate goal of spread-
ing the use of proof assistants in place of soft-
ware testing, wherever possible and relevant.

Here, we are interested in sharing of formal
theory between several different representa-
tions of the same mathematical concept, or
several implementations of the same specifi-
cation. From a theoretical point of view, this
study is based on the analysis of parametric-
ity translations for the Calculus of Construc-
tions, and proposes a generalisation of them.
These results are made concrete in the design
of two proof transfer tools, TRAKT and TROCQ,
whose implementation is discussed here, us-
ing the COQ-ELPI meta-language.

	Meta-Programming for Proof Transfer in Dependent Type Theory
	Contents
	Introduction
	A short history of logic
	Proof assistants and automation

	The Coq proof assistant: theory and practice
	A short primer to the Coq proof assistant
	Types for proofs and programs
	An expressive programming language

	Proof assistance
	Inference
	Tactics and automation
	Rewriting and proof transfer

	Meta-programming in Coq with Coq-Elpi
	A logic meta-programming language for Coq
	A toolbox

	Trakt: proof transfer by canonisation
	Goal canonisation: objectives and current situation
	Content of the desired preprocessing algorithm
	The Iosevka Mediumzify family: features and limits

	Theoretical mode of operation
	Gathering user information
	Preprocessing algorithm

	Conclusion and perspectives
	Ecosystem of automation tools for Coq
	Success of the plugin
	Paths of improvement

	Trocq: proof transfer by parametricity
	Parametricity in dependent type theory
	Motivation and definition
	Univalent parametricity

	Type equivalence in kit
	A new formulation of type equivalence
	Populating the hierarchy of relations

	A calculus for proof transfer
	Raw parametricity sequents
	Univalent parametricity sequents
	Annotated type theory
	The Trocq calculus
	Constants

	Conclusion and perspectives

	Implementation of preprocessing tools with Coq-Elpi
	Software architecture of a preprocessing plugin
	User knowledge base
	Traversal of the initial goal

	Implementation of a parametricity plugin
	Generating and inhabiting the parametricity hierarchy
	Implementation of the parametricity relation
	Parametricity class inference
	Universe polymorphism

	Conclusion and perspectives
	Bibliography

